Chao Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5456888/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prussian blue-conjugated ZnO nanoparticles for near-infrared light-responsive photocatalysis. Materials Today Energy, 2022, 23, 100895.	4.7	14
2	Beneficial effects of mijianchangpu decoction on ischemic stroke through components accessing to the brain based on network pharmacology. Journal of Ethnopharmacology, 2022, 285, 114882.	4.1	6
3	Superstructures with Atomic-Level Arranged Perovskite and Oxide Layers for Advanced Oxidation with an Enhanced Non-Free Radical Pathway. ACS Sustainable Chemistry and Engineering, 2022, 10, 1899-1909.	6.7	59
4	High Selectivity Electrocatalysts for Oxygen Evolution Reaction and Anti-Chlorine Corrosion Strategies in Seawater Splitting. Catalysts, 2022, 12, 261.	3.5	34
5	Composite cathodes for protonic ceramic fuel cells: Rationales and materials. Composites Part B: Engineering, 2022, 238, 109881.	12.0	59
6	LaBa0.8Ca0.2Co2O5+l̂´cathode with superior CO2 resistance and high oxygen reduction activity for intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2022, 47, 16214-16221.	7.1	11
7	Nonnoble metal oxides for highâ€performance Znâ€air batteries: Design strategies and future challenges. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	1.5	2
8	Electrochemical performance of yttriaâ€doped SrCoO _{3â€Î´} as cathode material for anodeâ€supported solid oxide fuel cell. Asia-Pacific Journal of Chemical Engineering, 2022, 17, .	1.5	1
9	Potential Therapeutic Effects of Mi-Jian-Chang-Pu Decoction on Neurochemical and Metabolic Changes of Cerebral Ischemia-Reperfusion Injury in Rats. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-15.	4.0	4
10	Recent advances and perspectives of fluorite and perovskite-based dual-ion conducting solid oxide fuel cells. Journal of Energy Chemistry, 2021, 57, 406-427.	12.9	56
11	Oxide-based precious metal-free electrocatalysts for anion exchange membrane fuel cells: from material design to cell applications. Journal of Materials Chemistry A, 2021, 9, 3151-3179.	10.3	12
12	Defects-rich porous carbon microspheres as green electrocatalysts for efficient and stable oxygen-reduction reaction over a wide range of pH values. Chemical Engineering Journal, 2021, 406, 126883.	12.7	59
13	SrCo0.8Ti0.1Ta0.1O3-δ perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells. Composites Part B: Engineering, 2021, 213, 108726.	12.0	40
14	Simultaneous determination of both kavalactone and flavokawain constituents by different singleâ€marker methods in kava. Journal of Separation Science, 2021, 44, 2705-2716.	2.5	3
15	Building Ruddlesden–Popper and Single Perovskite Nanocomposites: A New Strategy to Develop Highâ€Performance Cathode for Protonic Ceramic Fuel Cells. Small, 2021, 17, e2101872.	10.0	38
16	Cation-Deficient Perovskites for Clean Energy Conversion. Accounts of Materials Research, 2021, 2, 477-488.	11.7	82
17	Fundamental Understanding and Application of Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â~î^} Perovskite in Energy Storage and Conversion: Past, Present, and Future. Energy & Fuels, 2021, 35, 13585-13609.	5.1	113
18	Biological Activity, Hepatotoxicity, and Structure-Activity Relationship of Kavalactones and Flavokavins, the Two Main Bioactive Components in Kava (Piper methysticum). Evidence-based Complementary and Alternative Medicine, 2021, 2021, 1-14.	1.2	2

#	Article	IF	CITATIONS
19	Carotenoid Contents of Lycium barbarum: A Novel QAMS Analyses, Geographical Origins Discriminant Evaluation, and Storage Stability Assessment. Molecules, 2021, 26, 5374.	3.8	4
20	Interface engineered perovskite oxides for enhanced catalytic oxidation: The vital role of lattice oxygen. Chemical Engineering Science, 2021, 245, 116944.	3.8	26
21	Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chemical Society Reviews, 2021, 50, 12744-12787.	38.1	75
22	Progress in the Medicinal Value, Bioactive Compounds, and Pharmacological Activities of Gynostemma pentaphyllum. Molecules, 2021, 26, 6249.	3.8	32
23	Electrolyte materials for intermediate-temperature solid oxide fuel cells. Progress in Natural Science: Materials International, 2020, 30, 764-774.	4.4	129
24	Facilitating Oxygen Redox on Manganese Oxide Nanosheets by Tuning Active Species and Oxygen Defects for Zincâ€Air Batteries. ChemElectroChem, 2020, 7, 4949-4955.	3.4	23
25	Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy & Fuels, 2020, 34, 15169-15194.	5.1	152
26	A pan-cancer analysis of the oncogenic role of staphylococcal nuclease domain-containing protein 1 (SND1) in human tumors. Genomics, 2020, 112, 3958-3967.	2.9	98
27	Solid oxide fuel cells in combination with biomass gasification for electric power generation. Chinese Journal of Chemical Engineering, 2020, 28, 1156-1161.	3.5	25
28	Facet- and defect-dependent activity of perovskites in catalytic evolution of sulfate radicals. Applied Catalysis B: Environmental, 2020, 272, 118972.	20.2	91
29	The bioactive components as well as the nutritional and health effects of sea buckthorn. RSC Advances, 2020, 10, 44654-44671.	3.6	23
30	Evaluation of the CO2 tolerant cathode for solid oxide fuel cells: Praseodymium oxysulfates/Ba0.5Sr0.5Co0.8Fe0.2O3-1´. Applied Surface Science, 2019, 472, 10-15.	6.1	17
31	Anchoring perovskite LaMnO3 nanoparticles on biomassâ~'derived N, P coâ~'doped porous carbon for efficient oxygen reduction. Electrochimica Acta, 2018, 274, 40-48.	5.2	51
32	Oncoprotein Tudor-SN is a key determinant providing survival advantage under DNA damaging stress. Cell Death and Differentiation, 2018, 25, 1625-1637.	11.2	23
33	Insights into perovskite-catalyzed peroxymonosulfate activation: Maneuverable cobalt sites for promoted evolution of sulfate radicals. Applied Catalysis B: Environmental, 2018, 220, 626-634.	20.2	428
34	Isobaric Molar Heat Capacity of Ethyl Octanoate and Ethyl Decanoate at Pressures up to 24 MPa. Journal of Chemical & Engineering Data, 2018, 63, 2252-2256.	1.9	14
35	Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study. ACS Catalysis, 2017, 7, 388-397.	11.2	260
36	SrCo1â^'xTixO3â^'δ perovskites as excellent catalysts for fast degradation of water contaminants in neutral and alkaline solutions. Scientific Reports, 2017, 7, 44215.	3.3	68

#	Article	IF	CITATIONS
37	Yolk–Shell‣tructured Cu/Fe@γâ€Fe 2 O 3 Nanoparticles Loaded Graphitic Porous Carbon for the Oxygen Reduction Reaction. Particle and Particle Systems Characterization, 2017, 34, 1700158.	2.3	12
38	A Perovskite Electrocatalyst for Efficient Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 6442-6448.	21.0	429
39	Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental, 2016, 194, 7-15.	20.2	390
40	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^'<i>Î′</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie, 2016, 128, 9728-9731.	2.0	48
41	Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. Advanced Science, 2016, 3, 1500187.	11.2	245
42	Electrocatalysis: Coâ€doping Strategy for Developing Perovskite Oxides as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction (Adv. Sci. 2/2016). Advanced Science, 2016, 3, .	11.2	1
43	Perovskite SrCo _{0.9} Nb _{0.1} O _{3â^'<i>δ</i>} as an Anionâ€Intercalated Electrode Material for Supercapacitors with Ultrahigh Volumetric Energy Density. Angewandte Chemie - International Edition, 2016, 55, 9576-9579.	13.8	87
44	Process Investigation of a Solid Carbon-Fueled Solid Oxide Fuel Cell Integrated with a CO ₂ -Permeating Membrane and a Sintering-Resistant Reverse Boudouard Reaction Catalyst. Energy & Fuels, 2016, 30, 1841-1848.	5.1	16
45	Pt/C–LiCoO ₂ composites with ultralow Pt loadings as synergistic bifunctional electrocatalysts for oxygen reduction and evolution reactions. Journal of Materials Chemistry A, 2016, 4, 4516-4524.	10.3	65
46	Graphene decorated with multiple nanosized active species as dual function electrocatalysts for lithium-oxygen batteries. Electrochimica Acta, 2016, 188, 718-726.	5.2	14
47	Progress and Prospects in Symmetrical Solid Oxide Fuel Cells with Two Identical Electrodes. Advanced Energy Materials, 2015, 5, 1500188.	19.5	128
48	SrNb _{0.1} Co _{0.7} Fe _{0.2} O _{3â^'<i>δ</i>} Perovskite as a Nextâ€Generation Electrocatalyst for Oxygen Evolution in Alkaline Solution. Angewandte Chemie - International Edition, 2015, 54, 3897-3901.	13.8	400
49	A Carbon–Air Battery for High Power Generation. Angewandte Chemie - International Edition, 2015, 54, 3722-3725.	13.8	40
50	SrCo _{0.9} Ti _{0.1} O _{3â^ʾδ} As a New Electrocatalyst for the Oxygen Evolution Reaction in Alkaline Electrolyte with Stable Performance. ACS Applied Materials & Interfaces, 2015, 7, 17663-17670.	8.0	125
51	Cobalt-free SrFe0.9Ti0.1O3â^δas a high-performance electrode material for oxygen reduction reaction on doped ceria electrolyte with favorable CO2 tolerance. Journal of the European Ceramic Society, 2015, 35, 2531-2539.	5.7	47
52	Boosting Oxygen Reduction Reaction Activity of Palladium by Stabilizing Its Unusual Oxidation States in Perovskite. Chemistry of Materials, 2015, 27, 3048-3054.	6.7	117
53	A top-down strategy for the synthesis of mesoporous Ba0.5Sr0.5Co0.8Fe0.2O3â^' as a cathode precursor for buffer layer-free deposition on stabilized zirconia electrolyte with a superior electrochemical performance. Journal of Power Sources, 2015, 274, 1024-1033.	7.8	44
54	A Universal and Facile Way for the Development of Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Utilizing the Synergistic Effect. Chemistry - A European Journal, 2014, 20, 15533-15542.	3.3	87

#	Article	IF	CITATIONS
55	Isobaric Heat Capacity of Boric Acid Solution. Journal of Chemical & Engineering Data, 2014, 59, 4200-4204.	1.9	10
56	Nickelâ€Based Anode with Water Storage Capability to Mitigate Carbon Deposition for Direct Ethanol Solid Oxide Fuel Cells. ChemSusChem, 2014, 7, 1719-1728.	6.8	59
57	Fabrication and operation of flowâ€ŧhrough tubular SOFCs for electric power and synthesis gas cogeneration from methane. AICHE Journal, 2014, 60, 1036-1044.	3.6	11
58	Single-chamber solid oxide fuel cells with nanocatalyst-modified anodes capable of in situ activation. Journal of Power Sources, 2014, 264, 220-228.	7.8	10
59	Nano La _{0.6} Ca _{0.4} Fe _{0.8} Ni _{0.2} O _{3â^îÎ} decorated porous doped ceria as a novel cobalt-free electrode for "symmetrical―solid oxide fuel cells. Journal of Materials Chemistry A, 2014, 2, 19526-19535.	10.3	79
60	Advanced Symmetric Solid Oxide Fuel Cell with an Infiltrated K ₂ NiF ₄ -Type La ₂ NiO ₄ Electrode. Energy & Fuels, 2014, 28, 356-362.	5.1	86
61	Green synthesis of mesoporous ZnFe2O4/C composite microspheres as superior anode materials for lithium-ion batteries. Journal of Power Sources, 2014, 258, 305-313.	7.8	97
62	Mixed Fuel Strategy for Carbon Deposition Mitigation in Solid Oxide Fuel Cells at Intermediate Temperatures. Environmental Science & Technology, 2014, 48, 7122-7127.	10.0	12
63	3D amorphous carbon and graphene co-modified LiFePO4 composite derived from polyol process as electrode for high power lithium-ion batteries. Journal of Energy Chemistry, 2014, 23, 363-375.	12.9	32
64	Progress in Solid Oxide Fuel Cells with Nickel-Based Anodes Operating on Methane and Related Fuels. Chemical Reviews, 2013, 113, 8104-8151.	47.7	420
65	Thermal inkjet printing of thin-film electrolytes and buffering layers for solid oxide fuel cells with improved performance. International Journal of Hydrogen Energy, 2013, 38, 9310-9319.	7.1	44
66	A 3D porous architecture composed of TiO2 nanotubes connected with a carbon nanofiber matrix for fast energy storage. Journal of Materials Chemistry A, 2013, 1, 12310.	10.3	75
67	Renewable acetic acid in combination with solid oxide fuel cells for sustainable clean electric power generation. Journal of Materials Chemistry A, 2013, 1, 5620.	10.3	39
68	Ammonia-mediated suppression of coke formation in direct-methane solid oxide fuel cells with nickel-based anodes. Journal of Power Sources, 2013, 240, 232-240.	7.8	12
69	CO2 and water vapor-tolerant yttria stabilized bismuth oxide (YSB) membranes with external short circuit for oxygen separation with CO2 capture at intermediate temperatures. Journal of Membrane Science, 2013, 427, 168-175.	8.2	11
70	Solid oxide fuel cells with both high voltage and power output by utilizing beneficial interfacial reaction. Physical Chemistry Chemical Physics, 2012, 14, 12173.	2.8	17
71	Coke-free direct formic acid solid oxide fuel cells operating at intermediate temperatures. Journal of Power Sources, 2012, 220, 147-152.	7.8	13
72	Further performance enhancement of a DME-fueled solid oxide fuel cell by applying anode functional catalyst. International Journal of Hydrogen Energy, 2012, 37, 6844-6852.	7.1	7

#	Article	IF	CITATIONS
73	Nickel zirconia cerate cermet for catalytic partial oxidation of ethanol in a solid oxide fuel cell system. International Journal of Hydrogen Energy, 2012, 37, 8603-8612.	7.1	24
74	Effect of fabrication method on properties and performance of bimetallic Ni0.75Fe0.25 anode catalyst for solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37, 9287-9297.	7.1	14
75	lron incorporated Ni–ZrO2 catalysts for electric power generation from methane. International Journal of Hydrogen Energy, 2012, 37, 9801-9808.	7.1	14
76	A new symmetric solid oxide fuel cell with a samaria-doped ceria framework and a silver-infiltrated electrocatalyst. Journal of Power Sources, 2012, 197, 57-64.	7.8	34
77	Study on proton-conducting solid oxide fuel cells with a conventional nickel cermet anode operating on dimethyl ether. Journal of Power Sources, 2011, 196, 9246-9253.	7.8	11
78	Effect of nickel content and preparation method on the performance of Ni-Al2O3 towards the applications in solid oxide fuel cells. International Journal of Hydrogen Energy, 2011, 36, 10958-10967.	7.1	27
79	Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel. Journal of Power Sources, 2011, 196, 1967-1974.	7.8	38
80	Electric Power and Synthesis Gas Coâ€generation From Methane with Zero Waste Gas Emission. Angewandte Chemie - International Edition, 2011, 50, 1792-1797.	13.8	71
81	Physically mixed LiLaNi–Al2O3 and copper as conductive anode catalysts in a solid oxide fuel cell for methane internal reforming and partial oxidation. International Journal of Hydrogen Energy, 2011, 36, 5632-5643.	7.1	34
82	A new Gd-promoted nickel catalyst for methane conversion to syngas and as an anode functional layer in a solid oxide fuel cell. Journal of Power Sources, 2011, 196, 3855-3862.	7.8	58
83	Reducing the operation temperature of a solid oxide fuel cell using a conventional nickel-based cermet anode on dimethyl ether fuel through internal partial oxidation. Journal of Power Sources, 2011, 196, 7601-7608.	7.8	10
84	A comprehensive evaluation of a Ni–Al2O3 catalyst as a functional layer of solid-oxide fuel cell anode. Journal of Power Sources, 2010, 195, 402-411.	7.8	43
85	Assessment of nickel cermets and La0.8Sr0.2Sc0.2Mn0.8O3 as solid-oxide fuel cell anodes operating on carbon monoxide fuel. Journal of Power Sources, 2010, 195, 1333-1343.	7.8	43
86	A new carbon fuel cell with high power output by integrating with in situ catalytic reverse Boudouard reaction. Electrochemistry Communications, 2009, 11, 1265-1268.	4.7	126
87	Thicknessâ€dependent highâ€performance solid oxide fuel cells with Ba _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O _{3â€Î} cathode. Asia-Pacific Journal of Chemical Engineering, 0, , .	1.5	5