List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5455715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Investigating the optimal size of anticancer nanomedicine. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15344-15349.	7.1	523
2	Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nature Biotechnology, 2018, 36, 707-716.	17.5	448
3	Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013, 8, 290-312.	11.9	416
4	Translocation of HIV TAT peptide and analogues induced by multiplexed membrane and cytoskeletal interactions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16883-16888.	7.1	287
5	Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nature Chemical Biology, 2017, 13, 415-424.	8.0	274
6	Disturbed mitochondrial dynamics in CD8+ TILs reinforce T cell exhaustion. Nature Immunology, 2020, 21, 1540-1551.	14.5	252
7	Smart chemistry in polymeric nanomedicine. Chemical Society Reviews, 2014, 43, 6982-7012.	38.1	171
8	Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. Journal of Materials Chemistry B, 2013, 1, 5288.	5.8	167
9	Synthesis and Biological Response of Size-Specific, Monodisperse Drug–Silica Nanoconjugates. ACS Nano, 2012, 6, 3954-3966.	14.6	163
10	Redox-Responsive, Core-Cross-Linked Micelles Capable of On-Demand, Concurrent Drug Release and Structure Disassembly. Biomacromolecules, 2013, 14, 3706-3712.	5.4	160
11	Metabolic reprogramming of terminally exhausted CD8+ T cells by IL-10 enhances anti-tumor immunity. Nature Immunology, 2021, 22, 746-756.	14.5	160
12	Size-Dependent Tumor Penetration and <i>in Vivo</i> Efficacy of Monodisperse Drug–Silica Nanoconjugates. Molecular Pharmaceutics, 2013, 10, 883-892.	4.6	145
13	Chainâ€Shattering Polymeric Therapeutics with Onâ€Demand Drugâ€Release Capability. Angewandte Chemie - International Edition, 2013, 52, 6435-6439.	13.8	132
14	Biomaterial Strategies for Immunomodulation. Annual Review of Biomedical Engineering, 2015, 17, 317-349.	12.3	132
15	Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chemical Communications, 2006, , 3551.	4.1	122
16	Neoantigen Vaccine Delivery for Personalized Anticancer Immunotherapy. Frontiers in Immunology, 2018, 9, 1499.	4.8	119
17	Enhancing Adoptive Cell Therapy of Cancer through Targeted Delivery of Small-Molecule Immunomodulators to Internalizing or Noninternalizing Receptors. ACS Nano, 2017, 11, 3089-3100.	14.6	117
18	Central memory CD8+ TÂcells derive from stem-like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity, 2020, 53, 985-1000.e11.	14.3	107

#	Article	IF	CITATIONS
19	High-throughput quantitation of inorganic nanoparticle biodistribution at the single-cell level using mass cytometry. Nature Communications, 2017, 8, 14069.	12.8	102
20	Aptamerâ€Functionalized, Ultra‣mall, Monodisperse Silica Nanoconjugates for Targeted Dualâ€Modal Imaging of Lymph Nodes with Metastatic Tumors. Angewandte Chemie - International Edition, 2012, 51, 12721-12726.	13.8	96
21	Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nature Biomedical Engineering, 2021, 5, 1411-1425.	22.5	96
22	The therapeutic efficacy of camptothecin-encapsulated supramolecular nanoparticles. Biomaterials, 2012, 33, 1162-1169.	11.4	82
23	Polylactideâ€cyclosporin A nanoparticles for targeted immunosuppression. FASEB Journal, 2010, 24, 3927-3938.	0.5	78
24	Targeted Delivery of Immunomodulators to Lymph Nodes. Cell Reports, 2016, 15, 1202-1213.	6.4	73
25	Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4601-9.	7.1	71
26	Targeting Tumor Vasculature with Aptamer-Functionalized Doxorubicin–Polylactide Nanoconjugates for Enhanced Cancer Therapy. ACS Nano, 2015, 9, 5072-5081.	14.6	70
27	Delivery of STING agonists for adjuvanting subunit vaccines. Advanced Drug Delivery Reviews, 2021, 179, 114020.	13.7	65
28	Redox-responsive interleukin-2 nanogel specifically and safely promotes the proliferation and memory precursor differentiation of tumor-reactive T-cells. Biomaterials Science, 2019, 7, 1345-1357.	5.4	58
29	Nanopolymeric Therapeutics. MRS Bulletin, 2009, 34, 422-431.	3.5	51
30	Redox-Responsive Polycondensate Neoepitope for Enhanced Personalized Cancer Vaccine. ACS Central Science, 2020, 6, 404-412.	11.3	45
31	Polylactide nanoparticles containing stably incorporated cyanine dyes for in vitro and in vivo imaging applications. Microscopy Research and Technique, 2010, 73, 901-909.	2.2	42
32	Immunosuppressive Activity of Size-Controlled PEG-PLGA Nanoparticles Containing Encapsulated Cyclosporine A. Journal of Transplantation, 2012, 2012, 1-9.	0.5	41
33	Surgery-free injectable macroscale biomaterials for local cancer immunotherapy. Biomaterials Science, 2019, 7, 733-749.	5.4	41
34	Regulatory T cells engineered with TCR signaling–responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Science Translational Medicine, 2020, 12, .	12.4	39
35	Cytokine engineering for targeted cancer immunotherapy. Current Opinion in Chemical Biology, 2021, 62, 43-52.	6.1	36
36	Epitaxial Ag templates on Si(001) for bicrystal CoCrTa media. Journal of Applied Physics, 1997, 81, 4370-4372.	2.5	35

#	Article	IF	CITATIONS
37	<i>In Vivo</i> Targeting of Metabolically Labeled Cancers with Ultra-Small Silica Nanoconjugates. Theranostics, 2016, 6, 1467-1476.	10.0	34
38	Immunoengineering with biomaterials for enhanced cancer immunotherapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1506.	6.1	33
39	A Manganese Phosphate Nanocluster Activates the cGASâ€STING Pathway for Enhanced Cancer Immunotherapy. Advanced Therapeutics, 2021, 4, 2100065.	3.2	32
40	Engineering cancer vaccines using stimuli-responsive biomaterials. Nano Research, 2018, 11, 5355-5371.	10.4	29
41	Bioorthogonal oxime ligation mediated in vivo cancer targeting. Chemical Science, 2015, 6, 2182-2186.	7.4	28
42	Chain‧hattering Polymeric Therapeutics with Onâ€Đemand Drugâ€Release Capability. Angewandte Chemie, 2013, 125, 6563-6567.	2.0	26
43	Mechanical Immunoengineering of T cells for Therapeutic Applications. Accounts of Chemical Research, 2020, 53, 2777-2790.	15.6	24
44	Switchable immune modulator for tumor-specific activation of anticancer immunity. Science Advances, 2021, 7, eabg7291.	10.3	24
45	Lymphatic Biodistribution of Polylactide Nanoparticles. Molecular Imaging, 2010, 9, 7290.2010.00012.	1.4	22
46	Albumin as a "Trojan Horse―for polymeric nanoconjugate transendothelial transport across tumor vasculatures for improved cancer targeting. Biomaterials Science, 2018, 6, 1189-1200.	5.4	19
47	Donor cell engineering with GSK3 inhibitor–loaded nanoparticles enhances engraftment after in utero transplantation. Blood, 2019, 134, 1983-1995.	1.4	13
48	T cell force-responsive delivery of anticancer drugs using mesoporous silica microparticles. Materials Horizons, 2020, 7, 3196-3200.	12.2	12
49	Lymphatic biodistribution of polylactide nanoparticles. Molecular Imaging, 2010, 9, 153-62.	1.4	9
50	A Magnetic Nanovaccine Enhances Cancer Immunotherapy. ACS Central Science, 2019, 5, 747-749.	11.3	8
51	Targeting Mantle Cell Lymphoma with Anti-SYK Nanoparticles. Journal of Analytical Oncology, 2012, 1, 1-9.	0.1	7
52	Synthetic 3D scaffolds for cancer immunotherapy. Current Opinion in Biotechnology, 2020, 65, 1-8.	6.6	6
53	Development and Application of Anticancer Nanomedicine. Nanostructure Science and Technology, 2012, , 31-46.	0.1	4
54	Thermo-responsive behavior of novel polyitaconates having pyrrolidinonyl moiety. Macromolecular Rapid Communications, 2000, 21, 567-573.	3.9	2

#	Article	IF	CITATIONS
55	Controlled formulation of doxorubicin-polylactide nanoconjugates for cancer drug delivery. , 2009, 2009, 2400-2.		1
56	T lymphocyte engineering with cytokine nanogels for enhanced cancer immunotherapy. , 2015, 3, .		1
57	Abstract 2792: Engineering T lymphocytes with protein nanogels for cancer immunotherapy. Cancer Research, 2014, 74, 2792-2792.	0.9	1
58	Drug-polyester conjugated nanoparticles for cancer drug delivery. , 2011, 2011, 8337-9.		0
59	517. Improving CAR T Cell Efficacy for Solid Tumors By Nanogel-Based Delivery of Immunomodulatory Proteins. Molecular Therapy, 2015, 23, S207.	8.2	0
60	Editorial overview: Tissue, cell and pathway engineering: programming biology for smart therapeutics, microbial cell factory and intelligent biomanufacturing. Current Opinion in Biotechnology, 2020, 66, iii-vi.	6.6	0
61	Cell Engineering with Glycogen Synthase Kinase-3 Beta Inhibitor-Loaded Synthetic Nanoparticles Enhances Hematopoietic Engraftment of Bone Marrow Mononuclear Cells Following in Utero Transplantation. Blood, 2014, 124, 2414-2414.	1.4	0
62	Abstract A073: Carrier-free delivery of cytokine to specifically expand adoptively transferred T cells for enhanced cancer immunotherapy. , 2016, , .		0
63	Abstract B53: T lymphocyte engineering with responsive cytokine nanogels for enhanced efficacy and safety of adoptive cell therapy for cancer. , 2017, , .		0
64	Abstract B59: Enhancing T-cell therapy through TCR signaling-responsive nanogel drug delivery. , 2017,		0