List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5455535/publications.pdf Version: 2024-02-01

STEEAN EDASMI

#	Article	IF	CITATIONS
1	Greenhouse gas emissions from soils—A review. Chemie Der Erde, 2016, 76, 327-352.	2.0	702
2	Tradeoffs between income, biodiversity, and ecosystem functioning during tropical rainforest conversion and agroforestry intensification. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 4973-4978.	7.1	396
3	Combining high biodiversity with high yields in tropical agroforests. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8311-8316.	7.1	339
4	Understanding Forest Health with Remote Sensing -Part l—A Review of Spectral Traits, Processes and Remote-Sensing Characteristics. Remote Sensing, 2016, 8, 1029.	4.0	138
5	Configurational landscape heterogeneity shapes functional community composition of grassland butterflies. Journal of Applied Ecology, 2015, 52, 505-513.	4.0	129
6	Understanding Forest Health with Remote Sensing-Part Il—A Review of Approaches and Data Models. Remote Sensing, 2017, 9, 129.	4.0	110
7	Landscape composition and configuration differently affect trap-nesting bees, wasps and their antagonists. Biological Conservation, 2014, 172, 56-64.	4.1	97
8	Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 2022, 269, 112831.	11.0	95
9	Effects of an experimental drought on the functioning of a cacao agroforestry system, Sulawesi, Indonesia. Clobal Change Biology, 2010, 16, 1515-1530.	9.5	92
10	Below- and above-ground biomass and net primary production in a paleotropical natural forest (Sulawesi, Indonesia) as compared to neotropical forests. Forest Ecology and Management, 2009, 258, 1904-1912.	3.2	86
11	Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. European Journal of Remote Sensing, 2013, 46, 40-59.	3.5	66
12	Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from MODIS data in a tropical forest. Remote Sensing of Environment, 2012, 121, 252-260.	11.0	59
13	Regional land cover mapping in the humid tropics using combined optical and SAR satellite data—a case study from Central Sulawesi, Indonesia. International Journal of Remote Sensing, 2009, 30, 2465-2478.	2.9	57
14	Spatial Patterns of NDVI Variation over Indonesia and Their Relationship to ENSO Warm Events during the Period 1982–2006. Journal of Climate, 2009, 22, 6612-6623.	3.2	45
15	Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sensing of Environment, 2020, 246, 111814.	11.0	45
16	Vegetation Greenness in Northeastern Brazil and Its Relation to ENSO Warm Events. Remote Sensing, 2014, 6, 3041-3058.	4.0	44
17	Comparing Sentinel-1 and -2 Data and Indices for Agricultural Land Use Monitoring. Remote Sensing, 2020, 12, 2919.	4.0	44
18	Evaluating the Quality and Accuracy of TanDEM-X Digital Elevation Models at Archaeological Sites in the Cilician Plain, Turkey. Remote Sensing, 2014, 6, 9475-9493.	4.0	41

#	Article	IF	CITATIONS
19	Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 147, 232-241.	11.1	40
20	Conversion of tropical moist forest into cacao agroforest: consequences for carbon pools and annual C sequestration. Agroforestry Systems, 2013, 87, 1173-1187.	2.0	38
21	Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics. Ecological Informatics, 2013, 18, 61-68.	5.2	36
22	Effects of land-use changes on evapotranspiration of tropical rain forest margin area in Central Sulawesi (Indonesia): Modelling study with a regional SVAT model. Ecological Modelling, 2008, 212, 131-137.	2.5	34
23	Downgrading Recent Estimates of Land Available for Biofuel Production. Environmental Science & Technology, 2013, 47, 130128103203003.	10.0	34
24	A physically based approach to model LAI from MODIS 250m data in a tropical region. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 47-59.	2.8	30
25	Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia. Biogeosciences, 2018, 15, 1319-1333.	3.3	29
26	Mowing event detection in permanent grasslands: Systematic evaluation of input features from Sentinel-1, Sentinel-2, and Landsat 8 time series. Remote Sensing of Environment, 2021, 267, 112751.	11.0	28
27	Prediction of yield and the contribution of legumes in legume-grass mixtures using field spectrometry. Precision Agriculture, 2009, 10, 128-144.	6.0	27
28	Quantifying apart what belongs together: A multiâ€state species distribution modelling framework for species using distinct habitats. Methods in Ecology and Evolution, 2018, 9, 98-108.	5.2	26
29	Multi-Source Remotely Sensed Data Combination: Projection Transformation Gap-Fill Procedure. Sensors, 2008, 8, 4429-4440.	3.8	24
30	Functional beetle diversity in managed grasslands: effects of region, landscape context and land use intensity. Landscape Ecology, 2014, 29, 529-540.	4.2	24
31	Modelling the productivity of Siberian larch forests from Landsat NDVI time series in fragmented forest stands of the Mongolian forest-steppe. Environmental Monitoring and Assessment, 2021, 193, 200.	2.7	24
32	Surface albedo as a proxy for land-cover clearing in seasonally dry forests: Evidence from the Brazilian Caatinga. Remote Sensing of Environment, 2020, 238, 111250.	11.0	23
33	Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum—Mato Grosso. Remote Sensing, 2019, 11, 1161.	4.0	21
34	Canopy height estimation with TanDEM-X in temperate and boreal forests. International Journal of Applied Earth Observation and Geoinformation, 2019, 82, 101904.	2.8	19
35	Accounting More Precisely for Peat and Other Soil Carbon Resources. , 2012, , 127-157.		18
36	Towards improved bottom-up inventories of methane from the European land surface. Atmospheric Environment, 2012, 51, 203-211.	4.1	17

3

#	Article	IF	CITATIONS
37	Spatially Explicit Estimation of Leaf Area Index Using EO-1 Hyperion and Landsat ETM+ Data: Implications of Spectral Bandwidth and Shortwave Infrared Data on Prediction Accuracy in a Tropical Montane Environment. GIScience and Remote Sensing, 2008, 45, 229-248.	5.9	16
38	Satellite-based prediction of rainfall interception by tropical forest stands of a human-dominated landscape in Central Sulawesi, Indonesia. Journal of Hydrology, 2009, 364, 227-235.	5.4	15
39	Modeling forest lines and forest distribution patterns with remote-sensing data in a mountainous region of semiarid central Asia. Biogeosciences, 2015, 12, 2893-2905.	3.3	15
40	SARchaeology—Detecting Palaeochannels Based on High Resolution Radar Data and Their Impact of Changes in the Settlement Pattern in Cilicia (Turkey). Geosciences (Switzerland), 2017, 7, 109.	2.2	15
41	Mapping patterns of mineral alteration in volcanic terrains using ASTER data and field spectrometry in Southern Peru. Journal of South American Earth Sciences, 2013, 48, 296-314.	1.4	13
42	Comparison of Aboveground Biomass Estimation From InSAR and LiDAR Canopy Height Models in Tropical Forests. IEEE Geoscience and Remote Sensing Letters, 2020, 17, 367-371.	3.1	13
43	Evaluation of Sentinel-1 and Sentinel-2 Feature Sets for Delineating Agricultural Fields in Heterogeneous Landscapes. IEEE Access, 2021, 9, 116702-116719.	4.2	12
44	Using Airborne Laser Scanning to Characterize Land-Use Systems in a Tropical Landscape Based on Vegetation Structural Metrics. Remote Sensing, 2021, 13, 4794.	4.0	11
45	Russian boreal peatlands dominate the natural European methane budget. Environmental Research Letters, 2016, 11, 014004.	5.2	10
46	Rainforest conversion in Central Sulawesi, Indonesia: recent development and consequences for river discharge and water resources. Erdkunde, 2007, 61, 284-293.	0.8	10
47	Unsupervised Parameterization for Optimal Segmentation of Agricultural Parcels from Satellite Images in Different Agricultural Landscapes. Remote Sensing, 2020, 12, 3096.	4.0	8
48	Vegetation canopy height estimation in dynamic tropical landscapes with TanDEMâ€X supported by GEDI data. Methods in Ecology and Evolution, 2023, 14, 1639-1656.	5.2	6
49	Multi-source image reconstruction: exploitation of EO-1/ALI in Landsat-7/ETM+ SLC-off gap filling. , 2008, , .		5
50	High Resolution Forest Maps from Interferometric TanDEM-X and Multitemporal Sentinel-1 SAR Data. PFG - Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85, 389-405.	1.1	5
51	A new method for selecting sites for soil sampling, coupling global weighted principal component analysis and a cost-constrained conditioned Latin hypercube algorithm. MethodsX, 2019, 6, 284-299.	1.6	5
52	Geoecological parameters indicate discrepancies between potential and actual forest area in the forest-steppe of Central Mongolia. Forest Ecosystems, 2021, 8, .	3.1	5
53	Spaceborne height models reveal above ground biomass changes in tropical landscapes. Forest Ecology and Management, 2021, 497, 119497.	3.2	5
54	Sensitivity of Bistatic TanDEM-X Data to Stand Structural Parameters in Temperate Forests. Remote Sensing, 2019, 11, 2966.	4.0	5

#	Article	IF	CITATIONS
55	Potential and limitations of spectral reflectance measurements for the estimation of the site-specific variability in crops. , 2004, 5232, 42.		4
56	Methods of analyzing regional dermatological care as exemplified by the city of Hamburg. JDDG - Journal of the German Society of Dermatology, 2015, 13, 661-671.	0.8	3
57	The effects of land use change on atmospheric nutrientdeposition in Central Sulawesi. Erdkunde, 2013, 67, 109-122.	0.8	3
58	From global to regional scale: Remote sensing-based concepts and methods for mapping land-cover and land-cover change in tropical regions. , 2007, , 435-460.		3
59	Spatial and temporal variability of vegetation status in Paraíba, Northeastern Brazil. , 2012, , .		2
60	Habitat Mapping from Optical and SAR Satellite Data: Implications of Synergy and Uncertainty for Landscape Analysis. Photogrammetrie, Fernerkundung, Geoinformation, 2013, 2013, 139-148.	1.2	2
61	Spatiotemporal trends of forest cover change in Southeast Asia. Environmental Science and Engineering, 2010, , 269-291.	0.2	2
62	Analyzing TerraSAR-X staring spotlight mode data for archaeological prospections in the Altai Mountains. , 2015, , .		1
63	Semi-Physical Integration of Scattering Models for Microwaves and Optical Wavelengths. , 2018, , .		Ο