Wouter L De Laat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5455528/publications.pdf

Version: 2024-02-01

110 19,868 66 109
papers citations h-index g-index

117 117 21437 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Role of the cellular factor CTCF in the regulation of bovine leukemia virus latency and three-dimensional chromatin organization. Nucleic Acids Research, 2022, 50, 3190-3202.	14.5	5
2	Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nature Structural and Molecular Biology, 2022, 29, 563-574.	8.2	49
3	Novel orthogonal methods to uncover the complexity and diversity of nuclear architecture. Current Opinion in Genetics and Development, 2021, 67, 10-17.	3.3	6
4	Genetic Dissection of a Super Enhancer Controlling the <i>Nppa-Nppb</i> Cluster in the Heart. Circulation Research, 2021, 128, 115-129.	4.5	32
5	Robust detection of translocations in lymphoma FFPE samples using targeted locus capture-based sequencing. Nature Communications, 2021, 12, 3361.	12.8	19
6	Interplay between CTCF boundaries and a super enhancer controls cohesin extrusion trajectories and gene expression. Molecular Cell, 2021, 81, 3082-3095.e6.	9.7	29
7	A public–private partnership model for COVID-19 diagnostics. Nature Biotechnology, 2021, 39, 1182-1184.	17.5	4
8	4C-seq from beginning to end: A detailed protocol for sample preparation and data analysis. Methods, 2020, 170, 17-32.	3.8	107
9	Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies. Nature Protocols, 2020, 15, 364-397.	12.0	25
10	How chromosome topologies get their shape: views from proximity ligation and microscopy methods. FEBS Letters, 2020, 594, 3439-3449.	2.8	3
11	Recently Evolved Enhancers Emerge with High Interindividual Variability and Less Frequently Associate with Disease. Cell Reports, 2020, 31, 107799.	6.4	7
12	Epigenetic Analyses of Human Left Atrial Tissue Identifies Gene Networks Underlying Atrial Fibrillation. Circulation Genomic and Precision Medicine, 2020, 13, e003085.	3.6	14
13	Epigenetic and Transcriptional Networks Underlying Atrial Fibrillation. Circulation Research, 2020, 127, 34-50.	4.5	48
14	Hominin-specific regulatory elements selectively emerged in oligodendrocytes and are disrupted in autism patients. Nature Communications, 2020, 11, 301.	12.8	37
15	Abstract PO-45: Robust detection of translocations in lymphoma FFPE samples using Targeted Locus Capture-based sequencing. , 2020, , .		2
16	An enhancer cluster controls gene activity and topology of the SCN5A-SCN10A locus in vivo. Nature Communications, 2019, 10, 4943.	12.8	24
17	Identification and Characterization of a Transcribed Distal Enhancer Involved in Cardiac Kcnh2 Regulation. Cell Reports, 2019, 28, 2704-2714.e5.	6.4	15
18	DamC reveals principles of chromatin folding in vivo without crosslinking and ligation. Nature Structural and Molecular Biology, 2019, 26, 471-480.	8.2	71

#	Article	IF	CITATIONS
19	Chromatin Conformation Links Putative Enhancers in Intracranial Aneurysm–Associated Regions to Potential Candidate Genes. Journal of the American Heart Association, 2019, 8, e011201.	3.7	13
20	YAP Partially Reprograms Chromatin Accessibility to Directly Induce Adult Cardiogenesis InÂVivo. Developmental Cell, 2019, 48, 765-779.e7.	7.0	171
21	peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucleic Acids Research, 2018, 46, e91-e91.	14.5	63
22	Enhancer hubs and loop collisions identified from single-allele topologies. Nature Genetics, 2018, 50, 1151-1160.	21.4	189
23	Enhancer-Mediated Oncogenic Function of the Menin Tumor Suppressor in Breast Cancer. Cell Reports, 2017, 18, 2359-2372.	6.4	59
24	Can We Just Say: Transcription Second?. Cell, 2017, 169, 184-185.	28.9	10
25	Small chromosomal regions position themselves autonomously according to their chromatin class. Genome Research, 2017, 27, 922-933.	5.5	39
26	Sensitive Monogenic Noninvasive Prenatal Diagnosis by Targeted Haplotyping. American Journal of Human Genetics, 2017, 101, 326-339.	6.2	76
27	A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression. Cell, 2017, 170, 522-533.e15.	28.9	356
28	Transcription-factor-dependent enhancer transcription defines a gene regulatory network for cardiac rhythm. ELife, $2017, 6, .$	6.0	36
29	Enhancers reside in a unique epigenetic environment during early zebrafish development. Genome Biology, 2016, 17, 146.	8.8	41
30	Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos. Genes and Development, 2016, 30, 1937-1942.	5.9	77
31	Regulation of disease-associated gene expression in the 3D genome. Nature Reviews Molecular Cell Biology, 2016, 17, 771-782.	37.0	294
32	The second decade of 3C technologies: detailed insights into nuclear organization. Genes and Development, 2016, 30, 1357-1382.	5.9	320
33	Epigenomic annotation of gene regulatory alterations during evolution of the primate brain. Nature Neuroscience, 2016, 19, 494-503.	14.8	113
34	Cause and Consequence of Tethering a SubTAD to Different Nuclear Compartments. Molecular Cell, 2016, 61, 461-473.	9.7	73
35	Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming. Cell Stem Cell, 2016, 18, 597-610.	11.1	187
36	Discovery and validation of sub-threshold genome-wide association study loci using epigenomic signatures. ELife, $2016, 5, .$	6.0	115

#	Article	IF	Citations
37	Quantitative analysis of chromatin interaction changes upon a 4.3 Mb deletion at mouse 4E2. BMC Genomics, 2015, 16, 982.	2.8	2
38	Local compartment changes and regulatory landscape alterations in histone H1-depleted cells. Genome Biology, 2015, 16, 289.	8.8	56
39	Characterization and dynamics of pericentromere-associated domains in mice. Genome Research, 2015, 25, 958-969.	5. 5	70
40	Dynamics of gene silencing during X inactivation using allele-specific RNA-seq. Genome Biology, 2015, 16, 149.	8.8	104
41	Architectural hallmarks of the pluripotent genome. FEBS Letters, 2015, 589, 2905-2913.	2.8	21
42	Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA. Nature Communications, 2015, 6, 6520.	12.8	149
43	YAP Drives Growth by Controlling Transcriptional Pause Release from Dynamic Enhancers. Molecular Cell, 2015, 60, 328-337.	9.7	228
44	High-Affinity Sites Form an Interaction Network to Facilitate Spreading of the MSL Complex across the X Chromosome in Drosophila. Molecular Cell, 2015, 60, 146-162.	9.7	70
45	Getting the genome in shape: the formation of loops, domains and compartments. Genome Biology, 2015, 16, 154.	8.8	103
46	CTCF Binding Polarity Determines Chromatin Looping. Molecular Cell, 2015, 60, 676-684.	9.7	537
47	A Long-Distance Chromatin Affair. Cell, 2015, 162, 942-943.	28.9	12
48	Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination. Molecular Cell, 2015, 60, 460-474.	9.7	80
49	Large-Scale Identification of Coregulated Enhancer Networks in the Adult Human Brain. Cell Reports, 2014, 9, 767-779.	6.4	78
50	A Large Permissive Regulatory Domain Exclusively Controls Tbx3 Expression in the Cardiac Conduction System. Circulation Research, 2014, 115, 432-441.	4.5	44
51	Targeted sequencing by proximity ligation for comprehensive variant detection and local haplotyping. Nature Biotechnology, 2014, 32, 1019-1025.	17.5	231
52	A Single Oncogenic Enhancer Rearrangement Causes Concomitant EVI1 and GATA2 Deregulation in Leukemia. Cell, 2014, 157, 369-381.	28.9	571
53	A common genetic variant within SCN10A modulates cardiac SCN5A expression. Journal of Clinical Investigation, 2014, 124, 1844-1852.	8.2	168
54	DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biology, 2013, 14, R50.	9.6	109

#	Article	IF	Citations
55	The pluripotent genome in three dimensions is shaped around pluripotency factors. Nature, 2013, 501, 227-231.	27.8	236
56	Flexible Long-Range Loops in the VH Gene Region of the Igh Locus Facilitate the Generation of a Diverse Antibody Repertoire. Immunity, 2013, 39, 229-244.	14.3	130
57	Topology of mammalian developmental enhancers and their regulatory landscapes. Nature, 2013, 502, 499-506.	27.8	463
58	CTCF: the protein, the binding partners, the binding sites and their chromatin loops. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120369.	4.0	191
59	Long-Range Chromatin Contacts in Embryonic Stem Cells Reveal a Role for Pluripotency Factors and Polycomb Proteins in Genome Organization. Cell Stem Cell, 2013, 13, 602-616.	11.1	246
60	For Genomes to Stay in Shape, Insulators Must Be up to PAR. Cell, 2013, 155, 15-16.	28.9	1
61	eRNAs Are Required for p53-Dependent Enhancer Activity and Gene Transcription. Molecular Cell, 2013, 49, 524-535.	9.7	484
62	Genomeâ€wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling. Molecular Systems Biology, 2013, 9, 638.	7.2	104
63	Identical cells with different 3D genomes; cause and consequences?. Current Opinion in Genetics and Development, 2013, 23, 191-196.	3.3	42
64	Allelic exclusion of the immunoglobulin heavy chain locus is independent of its nuclear localization in mature B cells. Nucleic Acids Research, 2013, 41, 6905-6916.	14.5	26
65	3D chromatin conformation correlates with replication timing and is conserved in resting cells. Nucleic Acids Research, 2012, 40, 9470-9481.	14.5	76
66	Determining long-range chromatin interactions for selected genomic sites using 4C-seq technology: From fixation to computation. Methods, 2012, 58, 221-230.	3.8	198
67	3C-based technologies to study the shape of the genome. Methods, 2012, 58, 189-191.	3.8	75
68	Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nature Methods, 2012, 9, 969-972.	19.0	357
69	4C Technology: Protocols and Data Analysis. Methods in Enzymology, 2012, 513, 89-112.	1.0	203
70	Chromatin loops, gene positioning, and gene expression. Frontiers in Genetics, 2012, 3, 217.	2.3	83
71	A decade of 3C technologies: insights into nuclear organization. Genes and Development, 2012, 26, 11-24.	5.9	631
72	Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Research, 2011, 21, 697-706.	5 . 5	132

#	Article	IF	CITATIONS
73	An evolutionarily conserved three-dimensional structure in the vertebrate Irx clusters facilitates enhancer sharing and coregulation. Nature Communications, 2011, 2, 310.	12.8	73
74	A Regulatory Archipelago Controls Hox Genes Transcription in Digits. Cell, 2011, 147, 1132-1145.	28.9	454
75	Interactions among Polycomb Domains Are Guided by Chromosome Architecture. PLoS Genetics, 2011, 7, e1001343.	3.5	156
76	Genome organization influences partner selection for chromosomal rearrangements. Trends in Genetics, 2011, 27, 63-71.	6.7	43
77	Integrated Transcript and Genome Analyses Reveal NKX2-1 and MEF2C as Potential Oncogenes in T Cell Acute Lymphoblastic Leukemia. Cancer Cell, 2011, 19, 484-497.	16.8	322
78	The Dynamic Architecture of <i>Hox</i> Gene Clusters. Science, 2011, 334, 222-225.	12.6	370
79	Variegated gene expression caused by cell-specific long-range DNA interactions. Nature Cell Biology, 2011, 13, 944-951.	10.3	133
80	The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes and Development, 2011, 25, 1371-1383.	5.9	278
81	The complex transcription regulatory landscape of our genome: control in three dimensions. EMBO Journal, 2011, 30, 4345-4355.	7.8	59
82	Tissue- and Expression Level–Specific Chromatin Looping at Maize <i>b1</i> Epialleles. Plant Cell, 2009, 21, 832-842.	6.6	126
83	High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nature Methods, 2009, 6, 837-842.	19.0	86
84	Studying physical chromatin interactions in plants using Chromosome Conformation Capture (3C). Nature Protocols, 2009, 4, 1216-1229.	12.0	85
85	Joining the loops: βâ€Globin gene regulation. IUBMB Life, 2008, 60, 824-833.	3.4	74
86	Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 2008, 453, 948-951.	27.8	1,658
87	FISH-eyed and genome-wide views on the spatial organisation of gene expression. Biochimica Et Biophysica Acta - Molecular Cell Research, 2008, 1783, 2052-2060.	4.1	25
88	Maintenance of Long-Range DNA Interactions after Inhibition of Ongoing RNA Polymerase II Transcription. PLoS ONE, 2008, 3, e1661.	2.5	114
89	Chapter 5 Threeâ€Dimensional Organization of Gene Expression in Erythroid Cells. Current Topics in Developmental Biology, 2008, 82, 117-139.	2.2	75
90	Chapter 4 βâ€Globin Regulation and Longâ€Range Interactions. Advances in Genetics, 2008, 61, 107-142.	1.8	112

#	Article	IF	Citations
91	Transcription and Chromatin Organization of a Housekeeping Gene Cluster Containing an Integrated \hat{l}^2 -Globin Locus Control Region. PLoS Genetics, 2008, 4, e1000016.	3.5	68
92	Inter-chromosomal gene regulation in the mammalian cell nucleus. Current Opinion in Genetics and Development, 2007, 17, 456-464.	3.3	51
93	Î ² -Globin Active Chromatin Hub Formation in Differentiating Erythroid Cells and in p45 NF-E2 Knock-out Mice. Journal of Biological Chemistry, 2007, 282, 16544-16552.	3.4	72
94	Reversible contraction by looping of the Tcra and Tcrb loci in rearranging thymocytes. Nature Immunology, 2007, 8, 378-387.	14.5	143
95	An evaluation of 3C-based methods to capture DNA interactions. Nature Methods, 2007, 4, 895-901.	19.0	274
96	Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nature Protocols, 2007, 2, 1722-1733.	12.0	620
97	Long-range DNA contacts: romance in the nucleus?. Current Opinion in Cell Biology, 2007, 19, 317-320.	5.4	28
98	CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes and Development, 2006, 20, 2349-2354.	5.9	643
99	Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C). Nature Genetics, 2006, 38, 1348-1354.	21.4	1,219
100	Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes and Development, 2004, 18, 1495-1509.	5.9	157
101	The active spatial organization of the Â-globin locus requires the transcription factor EKLF. Genes and Development, 2004, 18, 2485-2490.	5.9	321
102	Spatial organization of gene expression: the active chromatin hub. Chromosome Research, 2003, 11, 447-459.	2.2	336
103	The \hat{l}^2 -globin nuclear compartment in development and erythroid differentiation. Nature Genetics, 2003, 35, 190-194.	21.4	512
104	3C Technology: Analyzing the Spatial Organization of Genomic Loci In Vivo. Methods in Enzymology, 2003, 375, 493-507.	1.0	104
105	Looping and Interaction between Hypersensitive Sites in the Active \hat{l}^2 -globin Locus. Molecular Cell, 2002, 10, 1453-1465.	9.7	1,205
106	Novel Functional Interactions between Nucleotide Excision DNA Repair Proteins Influencing the Enzymatic Activities of TFIIH, XPG, and ERCC1-XPF. Biochemistry, 2001, 40, 160-165.	2.5	26
107	Mapping of interaction domains between human repair proteins ERCC1 and XPF. Nucleic Acids Research, 1998, 26, 4146-4152.	14.5	94
108	DNA Structural Elements Required for ERCC1-XPF Endonuclease Activity. Journal of Biological Chemistry, 1998, 273, 7835-7842.	3.4	198

Wouter L De Laat

#	Article	IF	CITATIONS
109	Xeroderma Pigmentosum Group F Caused by a Defect in a Structure-Specific DNA Repair Endonuclease. Cell, 1996, 86, 811-822.	28.9	492
110	Detailed Regulatory Interaction Map of the Human Heart Facilitates Gene Discovery for Cardiovascular Disease. SSRN Electronic Journal, 0, , .	0.4	1