Martin Byrdin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5453707/publications.pdf

Version: 2024-02-01

236925 345221 3,020 37 25 36 citations h-index g-index papers 37 37 37 3047 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Pushing the limits of flash photolysis to unravel the secrets of biological electron and proton transfer. Photochemical and Photobiological Sciences, 2022, , 1.	2.9	O
2	Mechanism and dynamics of fatty acid photodecarboxylase. Science, 2021, 372, .	12.6	93
3	Mechanistic Investigations of Green mEos4b Reveal a Dynamic Long-Lived Dark State. Journal of the American Chemical Society, 2020, 142, 10978-10988.	13.7	29
4	Photoswitching mechanism of a fluorescent protein revealed by time-resolved crystallography and transient absorption spectroscopy. Nature Communications, 2020, $11,741$.	12.8	56
5	Mechanistic investigation of mEos4b reveals a strategy to reduce track interruptions in sptPALM. Nature Methods, 2019, 16, 707-710.	19.0	43
6	NMR Reveals Light-Induced Changes in the Dynamics of a Photoswitchable Fluorescent Protein. Biophysical Journal, 2019, 117, 2087-2100.	0.5	10
7	A Long-Lived Triplet State Is the Entrance Gateway to Oxidative Photochemistry in Green Fluorescent Proteins. Journal of the American Chemical Society, 2018, 140, 2897-2905.	13.7	32
8	Chromophore twisting in the excited state of a photoswitchable fluorescent protein captured by time-resolved serial femtosecond crystallography. Nature Chemistry, 2018, 10, 31-37.	13.6	152
9	Global spectroscopic analysis to study the regulation of the photosynthetic proton motive force: A critical reappraisal. Biochimica Et Biophysica Acta - Bioenergetics, 2018, 1859, 676-683.	1.0	6
10	Serial Femtosecond Crystallography and Ultrafast Absorption Spectroscopy of the Photoswitchable Fluorescent Protein IrisFP. Journal of Physical Chemistry Letters, 2016, 7, 882-887.	4.6	43
11	Rational design of enhanced photoresistance in a photoswitchable fluorescent protein. Methods and Applications in Fluorescence, 2015, 3, 014004.	2.3	16
12	Phototransformable fluorescent proteins: Future challenges. Current Opinion in Chemical Biology, 2014, 20, 92-102.	6.1	73
13	Structural Basis of Photoswitching in Fluorescent Proteins. Methods in Molecular Biology, 2014, 1148, 177-202.	0.9	15
14	Structural Evidence for a Two-Regime Photobleaching Mechanism in a Reversibly Switchable Fluorescent Protein. Journal of the American Chemical Society, 2013, 135, 15841-15850.	13.7	61
15	DNA photolyase: Is the nonproductive back electron transfer really much slower than forward transfer?. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1462; author reply E1463.	7.1	10
16	The Cryptochromes: Blue Light Photoreceptors in Plants and Animals. Annual Review of Plant Biology, 2011, 62, 335-364.	18.7	723
17	Kinetics of cyclobutane thymine dimer splitting by DNA photolyase directly monitored in the UV. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9402-9407.	7.1	78
18	Reaction mechanisms of DNA photolyase. Current Opinion in Structural Biology, 2010, 20, 693-701.	5.7	170

#	Article	IF	CITATIONS
19	Quantum Yield Measurements of Short-Lived Photoactivation Intermediates in DNA Photolyase: Toward a Detailed Understanding of the Triple Tryptophan Electron Transfer Chain. Journal of Physical Chemistry A, 2010, 114, 3207-3214.	2.5	53
20	DNA Repair by Photolyase: A Novel Substrate with Low Background Absorption around 265 nm for Transient Absorption Studies in the UV. Biochemistry, 2010, 49, 297-303.	2.5	20
21	Very Fast Product Release and Catalytic Turnover of DNA Photolyase. ChemBioChem, 2009, 10, 1777-1780.	2.6	17
22	What Makes the Difference between a Cryptochrome and DNA Photolyase? A Spectroelectrochemical Comparison of the Flavin Redox Transitions. Journal of the American Chemical Society, 2009, 131, 426-427.	13.7	68
23	Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption. Review of Scientific Instruments, 2009, 80, 043102.	1.3	28
24	Removal of the PsaF Polypeptide Biases Electron Transfer in Favor of the PsaB Branch of Cofactors in Triton Xâ€100 Photosystem I Complexes from <i>Synechococcus</i> sp. PCC 7002 ^{â€} . Photochemistry and Photobiology, 2008, 84, 1371-1380.	2.5	7
25	Additive Effect of Mutations Affecting the Rate of Phylloquinone Reoxidation and Directionality of Electron Transfer within Photosystem I ^{â€} . Photochemistry and Photobiology, 2008, 84, 1381-1387.	2.5	23
26	Electron Hopping through the $15\tilde{\text{A}}$ Triple Tryptophan Molecular Wire in DNA Photolyase Occurs within 30 ps. Journal of the American Chemical Society, 2008, 130, 14394-14395.	13.7	101
27	Polarized Transient Absorption To Resolve Electron Transfer between Tryptophans in DNA Photolyase. Journal of Physical Chemistry B, 2008, 112, 6866-6871.	2.6	28
28	Observation of an Intermediate Tryptophanyl Radical in W306F Mutant DNA Photolyase from <i>Escherichia coli</i> Supports Electron Hopping along the Triple Tryptophan Chain. Biochemistry, 2007, 46, 10072-10077.	2.5	21
29	Assignment of a kinetic component to electron transfer between iron–sulfur clusters FX and FA/B of Photosystem I. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 1529-1538.	1.0	44
30	Role of the Middle Residue in the Triple Tryptophan Electron Transfer Chain of DNA Photolyase:Â Ultrafast Spectroscopy of a Trpâ†'Phe Mutant. Journal of Physical Chemistry B, 2006, 110, 15654-15658.	2.6	31
31	Light-induced Electron Transfer in Arabidopsis Cryptochrome-1 Correlates with in Vivo Function. Journal of Biological Chemistry, 2005, 280, 19437-19440.	3.4	138
32	P700+- and 3P700-induced quenching of the fluorescence at 760 nm in trimeric Photosystem I complexes from the cyanobacterium Arthrospira platensis. Biochimica Et Biophysica Acta - Bioenergetics, 2005, 1706, 53-67.	1.0	75
33	Intraprotein electron transfer and proton dynamics during photoactivation of DNA photolyase from E. coli: review and new insights from an "inverse―deuterium isotope effect. Biochimica Et Biophysica Acta - Bioenergetics, 2004, 1655, 64-70.	1.0	79
34	Light-induced electron transfer in a cryptochrome blue-light photoreceptor. Nature Structural and Molecular Biology, 2003, 10, 489-490.	8.2	248
35	Dissection of the triple tryptophan electron transfer chain in Escherichia coli DNA photolyase: Trp382 is the primary donor in photoactivation. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8676-8681.	7.1	101
36	Light Harvesting in Photosystem I: Modeling Based on the 2.5-Ã Structure of Photosystem I from Synechococcus elongatus. Biophysical Journal, 2002, 83, 433-457.	0.5	187

#	ARTICLE	IF	CITATIONS
37	Decay Kinetics and Quantum Yields of Fluorescence in Photosystem I from Synechococcus elongatus with P700 in the Reduced and Oxidized State: Are the Kinetics of Excited State Decay Trap-Limited or Transfer-Limited?. Biophysical Journal, 2000, 79, 992-1007.	0.5	141