Etienne Audinat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5453486/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seizure activity triggers tau hyperphosphorylation and amyloidogenic pathways. Epilepsia, 2022, 63, 919-935.	5.1	19
2	Therapeutic Potential of Astrocyte Purinergic Signalling in Epilepsy and Multiple Sclerosis. Frontiers in Pharmacology, 2022, 13, 900337.	3.5	8
3	Dietary fat exacerbates postprandial hypothalamic inflammation involving glial fibrillary acidic proteinâ€positive cells and microglia in male mice. Glia, 2021, 69, 42-60.	4.9	30
4	Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae. Chemosphere, 2021, 267, 128986.	8.2	31
5	Varying modalities of perinatal exposure to a pesticide cocktail elicit neurological adaptations in mice and zebrafish. Environmental Pollution, 2021, 278, 116755.	7.5	8
6	Microglia proliferation plays distinct roles in acquired epilepsy depending on disease stages. Epilepsia, 2021, 62, 1931-1945.	5.1	33
7	Glial Mechanisms of Inflammation During Seizures. Agents and Actions Supplements, 2021, , 45-70.	0.2	1
8	Role of astrocyte purinergic signaling in epilepsy. Glia, 2020, 68, 1677-1691.	4.9	34
9	Life-long Dietary Pesticide Cocktail Induces Astrogliosis Along with Behavioral Adaptations and Activates p450 Metabolic Pathways. Neuroscience, 2020, 446, 225-237.	2.3	8
10	Postprandial Hyperglycemia Stimulates Neuroglial Plasticity in Hypothalamic POMC Neurons after a Balanced Meal. Cell Reports, 2020, 30, 3067-3078.e5.	6.4	33
11	Electrophysiological Investigation of Microglia. Methods in Molecular Biology, 2019, 2034, 111-125.	0.9	2
12	Biphasic Impact of Prenatal Inflammation and Macrophage Depletion on the Wiring of Neocortical Inhibitory Circuits. Cell Reports, 2019, 28, 1119-1126.e4.	6.4	38
13	The GRâ€ANXA1 pathway is a pathological player and a candidate target in epilepsy. FASEB Journal, 2019, 33, 13998-14009.	0.5	19
14	A pericyteâ€glia scarring develops at the leaky capillaries in the hippocampus during seizure activity. Epilepsia, 2019, 60, 1399-1411.	5.1	37
15	Microglia Reactivity: Heterogeneous Pathological Phenotypes. Methods in Molecular Biology, 2019, 2034, 41-55.	0.9	12
16	Blocking TNFαâ€driven astrocyte purinergic signaling restores normal synaptic activity during epileptogenesis. Glia, 2018, 66, 2673-2683.	4.9	55
17	Microglia in CNS development: Shaping the brain for the future. Progress in Neurobiology, 2017, 149-150, 1-20.	5.7	203
18	PEGylated Red-Emitting Calcium Probe with Improved Sensing Properties for Neuroscience. ACS Sensors, 2017, 2, 1706-1712.	7.8	6

#	Article	IF	CITATIONS
19	An autocrine purinergic signaling controls astrocyte-induced neuronal excitation. Scientific Reports, 2017, 7, 11280.	3.3	48
20	Purinergic signaling in epilepsy. Journal of Neuroscience Research, 2016, 94, 781-793.	2.9	42
21	Fractalkine Signaling and Microglia Functions in the Developing Brain. Neural Plasticity, 2015, 2015, 1-8.	2.2	93
22	Postnatal Down-Regulation of the GABAA Receptor γ2 Subunit in Neocortical NG2 Cells Accompanies Synaptic-to-Extrasynaptic Switch in the GABAergic Transmission Mode. Cerebral Cortex, 2015, 25, 1114-1123.	2.9	47
23	Paradoxical effects of minocycline in the developing mouse somatosensory cortex. Glia, 2014, 62, 399-410.	4.9	36
24	Adaptive phenotype of microglial cells during the normal postnatal development of the somatosensory "Barrel―cortex. Glia, 2013, 61, 1582-1594.	4.9	76
25	Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation. Cell Death and Differentiation, 2013, 20, 1546-1557.	11.2	88
26	Involvement of P2X4 receptors in hippocampal microglial activation after <i>status epilepticus</i> . Glia, 2013, 61, 1306-1319.	4.9	96
27	Central Role of GABA in Neuron–Glia Interactions. Neuroscientist, 2012, 18, 237-250.	3.5	78
28	Deficiency of the Microglial Receptor CX3CR1 Impairs Postnatal Functional Development of Thalamocortical Synapses in the Barrel Cortex. Journal of Neuroscience, 2012, 32, 15106-15111.	3.6	320
29	GABA release by hippocampal astrocytes. Frontiers in Computational Neuroscience, 2012, 6, 59.	2.1	94
30	Diversity and specificity of glial cell responses in the thalamus (Commentary on Parri <i>etÂal.</i>). European Journal of Neuroscience, 2010, 32, 27-28.	2.6	0
31	Postnatal Switch from Synaptic to Extrasynaptic Transmission between Interneurons and NC2 Cells. Journal of Neuroscience, 2010, 30, 6921-6929.	3.6	94
32	Predominant Functional Expression of Kv1.3 by Activated Microglia of the Hippocampus after Status epilepticus. PLoS ONE, 2009, 4, e6770.	2.5	46
33	Functional α7â€containing nicotinic receptors of NG2â€expressing cells in the hippocampus. Glia, 2009, 57, 1104-1114.	4.9	61
34	Status Epilepticus Induces a Particular Microglial Activation State Characterized by Enhanced Purinergic Signaling. Journal of Neuroscience, 2008, 28, 9133-9144.	3.6	251
35	GABA, a forgotten gliotransmitter. Progress in Neurobiology, 2008, 86, 297-303.	5.7	99
36	Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. Journal of Physiology, 2007, 580, 373-383.	2.9	191

#	Article	IF	CITATIONS
37	Target cell-specific modulation of neuronal activity by astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 10058-10063.	7.1	202
38	Er81 is expressed in a subpopulation of layer 5 neurons in rodent and primate neocortices. Neuroscience, 2006, 137, 401-412.	2.3	101
39	Two Populations of Layer V Pyramidal Cells of the Mouse Neocortex: Development and Sensitivity to Anesthetics. Journal of Neurophysiology, 2005, 94, 3357-3367.	1.8	78
40	Glutamate Released from Glial Cells Synchronizes Neuronal Activity in the Hippocampus. Journal of Neuroscience, 2004, 24, 6920-6927.	3.6	457
41	Two-photon imaging of capillary blood flow in olfactory bulb glomeruli. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 13081-13086.	7.1	291
42	Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7808-7811.	7.1	466
43	Distinct Local Circuits Between Neocortical Pyramidal Cells and Fast-Spiking Interneurons in Young Adult Rats. Journal of Neurophysiology, 2003, 89, 943-953.	1.8	33
44	Two Types of Nicotinic Receptors Mediate an Excitation of Neocortical Layer I Interneurons. Journal of Neurophysiology, 2002, 88, 1318-1327.	1.8	123
45	Kainate Receptors Regulate Unitary IPSCs Elicited in Pyramidal Cells by Fast-Spiking Interneurons in the Neocortex. Journal of Neuroscience, 2001, 21, 2992-2999.	3.6	84
46	Identification of sleep-promoting neurons in vitro. Nature, 2000, 404, 992-995.	27.8	448
47	Classification of fusiform neocortical interneurons based on unsupervised clustering. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 6144-6149.	7.1	286
48	Postsynaptic Glutamate Receptors and Integrative Properties of Fast-Spiking Interneurons in the Rat Neocortex. Journal of Neurophysiology, 1999, 82, 1295-1302.	1.8	117
49	Developmental Synaptic Changes Increase the Range of Integrative Capabilities of an Identified Excitatory Neocortical Connection. Journal of Neuroscience, 1999, 19, 1566-1576.	3.6	64
50	Selective Excitation of Subtypes of Neocortical Interneurons by Nicotinic Receptors. Journal of Neuroscience, 1999, 19, 5228-5235.	3.6	237
51	Properties of bipolar VIPergic interneurons and their excitation by pyramidal neurons in the rat neocortex. European Journal of Neuroscience, 1998, 10, 3617-3628.	2.6	145
52	Cardiac arrest in rodents: Maximal duration compatible with a recovery of neuronal activity. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4748-4753.	7.1	22
53	Subunit Composition, Kinetic, and Permeation Properties of AMPA Receptors in Single Neocortical Nonpyramidal Cells. Journal of Neuroscience, 1997, 17, 6685-6696.	3.6	123
54	Molecular and Physiological Diversity of Cortical Nonpyramidal Cells. Journal of Neuroscience, 1997, 17, 3894-3906.	3.6	636

#	Article	IF	CITATIONS
55	Functional and molecular analysis of glutamate-gated channels by patch-clamp and RT-PCR at the single cell level. Neurochemistry International, 1996, 28, 119-136.	3.8	37
56	Neuronal activity differentially regulates NMDA receptor subunit expression in cerebellar granule cells. Journal of Neuroscience, 1996, 16, 631-639.	3.6	138
57	Diversity of glutamate receptors in neocortical neurons: Implications for synaptic plasticity. Journal of Physiology (Paris), 1996, 90, 331-332.	2.1	3
58	Afferent connections of the medial frontal cortex of the rat. II. Cortical and subcortical afferents. Journal of Comparative Neurology, 1995, 352, 567-593.	1.6	443
59	Calcium-dependent, slowly inactivating potassium currents in cultured neurons of rat neocortex. Experimental Brain Research, 1995, 107, 197-204.	1.5	0
60	Patch-Clamp Recording and RT-PCR on Single Cells. , 1995, , 193-232.		8
61	Single cell RT-PCR proceeds without the risk of genomic DNA amplification. Neurochemistry International, 1995, 26, 239-243.	3.8	28
62	Evidence for two types of non-NMDA receptors in rat cerebellar purkinje cells maintained in slice cultures. Neuropharmacology, 1995, 34, 335-346.	4.1	35
63	Activity-dependent Regulation of N-Methyl-d-aspartate Receptor Subunit Expression in Rat Cerebellar Granule Cells. European Journal of Neuroscience, 1994, 6, 1792-1800.	2.6	100
64	Cellular locus of the nitric oxide-synthase involved in cerebellar long-term depression induced by high external potassium concentration. Neuropharmacology, 1994, 33, 1399-1405.	4.1	131
65	Subunit composition at the single-cell level explains functional properties of a glutamate-gated channel. Neuron, 1994, 12, 383-388.	8.1	340
66	Analysis of AMPA receptor subunits expressed by single Purkinje cells using RNA polymerase chain reaction. Biochemical Society Transactions, 1993, 21, 93-97.	3.4	7
67	Excitatory synaptic potentials in neurons of the deep nuclei in olivo-cerebellar slice cultures. Neuroscience, 1992, 49, 903-911.	2.3	115
68	AMPA receptor subunits expressed by single purkinje cells. Neuron, 1992, 9, 247-258.	8.1	568
69	Excitatory amino acids receptors of cerebellar purkinje cells: Development and plasticity. Progress in Biophysics and Molecular Biology, 1991, 55, 31-46.	2.9	62
70	Responses to excitatory amino acids of Purkinje cells' and neurones of the deep nuclei in cerebellar slice cultures Journal of Physiology, 1990, 430, 297-313.	2.9	84
71	Climbing Fibre Responses in Olivo-cerebellar Slice Cultures. I. Microelectrode Recordings from Purkinje Cells. European Journal of Neuroscience, 1990, 2, 726-732.	2.6	37
72	Afferent connections of the medial frontal cortex of the rat. A study using retrograde transport of fluorescent dyes. I. Thalamic afferents. Brain Research Bulletin, 1990, 24, 341-354.	3.0	127

#	Article	IF	CITATIONS
73	Homocysteic Acid as Transmitter Candidate in the Mammalian Brain and Excitatory Amino Acids in Epilepsy. Advances in Experimental Medicine and Biology, 1990, 268, 57-63.	1.6	9
74	Neurotensin-induced excitation of neurons of the rat's frontal cortex studied intracellularly in vitro. Experimental Brain Research, 1989, 78, 358-68.	1.5	57
75	Cortico-cortical connections of the limbic cortex of the rat. Experimental Brain Research, 1988, 69, 439-43.	1.5	24
76	Excitation of rat prefrontal cortical neurons by dopamine: An in vitro electrophysiological study. Brain Research, 1987, 425, 263-274.	2.2	193
77	Electrophysiological properties of neurons recorded intracellularly in slices of the pigeon optic tectum. Neuroscience, 1987, 23, 305-318.	2.3	16
78	Synaptic transmission of excitation from the retina to cells in the pigeon's optic tectum. Brain Research, 1986, 365, 138-144.	2.2	8
79	Synaptic organization of inhibitory circuits in the pigeon's optic tectum. Brain Research, 1986, 365, 383-387.	2.2	18