
Fitnat H Yildiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5451219/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nitric oxide stimulates type IV MSHA pilus retraction in <i>Vibrio cholerae</i> via activation of the phosphodiesterase CdpA. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
2	Utilizing imaging mass spectrometry to analyze microbial biofilm chemical responses to exogenous compounds. Methods in Enzymology, 2022, 665, 281-304.	1.0	5
3	Mechanisms Underlying <i>Vibrio cholerae</i> Biofilm Formation and Dispersion. Annual Review of Microbiology, 2022, 76, 503-532.	7.3	34
4	Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Physical Biology, 2021, 18, 051501.	1.8	46
5	Quantitative image analysis of microbial communities with BiofilmQ. Nature Microbiology, 2021, 6, 151-156.	13.3	181
6	Sensor Domain of Histidine Kinase VxrA of Vibrio cholerae: Hairpin-Swapped Dimer and Its Conformational Change. Journal of Bacteriology, 2021, 203, .	2.2	4
7	Strategies and Approaches for Discovery of Small Molecule Disruptors of Biofilm Physiology. Molecules, 2021, 26, 4582.	3.8	5
8	A tyrosine phosphoregulatory system controls exopolysaccharide biosynthesis and biofilm formation in Vibrio cholerae. PLoS Pathogens, 2020, 16, e1008745.	4.7	10
9	Reciprocal c-di-GMP signaling: Incomplete flagellum biogenesis triggers c-di-GMP signaling pathways that promote biofilm formation. PLoS Genetics, 2020, 16, e1008703.	3.5	44
10	Development of Ratiometric Bioluminescent Sensors for <i>in Vivo</i> Detection of Bacterial Signaling. ACS Chemical Biology, 2020, 15, 904-914.	3.4	20
11	c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae. Nature Communications, 2020, 11, 1549.	12.8	70
12	c-di-GMP inhibits LonA-dependent proteolysis of TfoY in Vibrio cholerae. PLoS Genetics, 2020, 16, e1008897.	3.5	19
13	Correction for Zamorano-SÃ;nchez et al., "Functional Specialization in Vibrio cholerae Diguanylate Cyclases: Distinct Modes of Motility Suppression and c-di-GMP Production― MBio, 2020, 11, .	4.1	2
14	Effect of antimicrobial nanocomposites on Vibrio cholerae lifestyles: Pellicle biofilm, planktonic and surface-attached biofilm. PLoS ONE, 2019, 14, e0217869.	2.5	19
15	Functional Specialization in <i>Vibrio cholerae</i> Diguanylate Cyclases: Distinct Modes of Motility Suppression and c-di-GMP Production. MBio, 2019, 10, .	4.1	51
16	A Conserved Regulatory Circuit Controls Large Adhesins in Vibrio cholerae. MBio, 2019, 10, .	4.1	29
17	Breakdown of Vibrio cholerae biofilm architecture induced by antibiotics disrupts community barrier function. Nature Microbiology, 2019, 4, 2136-2145.	13.3	64
18	NtrC Adds a New Node to the Complex Regulatory Network of Biofilm Formation and <i>vps</i> Expression in Vibrio cholerae. Journal of Bacteriology, 2018, 200, .	2.2	18

Fitnat H Yildiz

#	Article	IF	CITATIONS
19	Synchronous termination of replication of the two chromosomes is an evolutionary selected feature in Vibrionaceae. PLoS Genetics, 2018, 14, e1007251.	3.5	36
20	The bioactive lipid (<i>S</i>)-sebastenoic acid impacts motility and dispersion in <i>Vibrio cholerae</i> . Canadian Journal of Chemistry, 2018, 96, 196-203.	1.1	0
21	The ins and outs of cyclic di-GMP signaling in Vibrio cholerae. Current Opinion in Microbiology, 2017, 36, 20-29.	5.1	119
22	The Two-Component Signal Transduction System VxrAB Positively Regulates Vibrio cholerae Biofilm Formation. Journal of Bacteriology, 2017, 199, .	2.2	43
23	Rules of Engagement: The Type VI Secretion System in Vibrio cholerae. Trends in Microbiology, 2017, 25, 267-279.	7.7	112
24	Structural dynamics of RbmA governs plasticity of Vibrio cholerae biofilms. ELife, 2017, 6, .	6.0	57
25	Staying Alive: Vibrio cholerae's Cycle of Environmental Survival, Transmission, and Dissemination. , 2016, , 593-633.		5
26	Response of Vibrio cholerae to Low-Temperature Shifts: CspV Regulation of Type VI Secretion, Biofilm Formation, and Association with Zooplankton. Applied and Environmental Microbiology, 2016, 82, 4441-4452.	3.1	56
27	Nucleotide binding by the widespread high-affinity cyclic di-GMP receptor MshEN domain. Nature Communications, 2016, 7, 12481.	12.8	129
28	Staying Alive: <i>Vibrio cholerae</i> 's Cycle of Environmental Survival, Transmission, and Dissemination. Microbiology Spectrum, 2016, 4, .	3.0	107
29	Phenotypic Analysis Reveals that the 2010 Haiti Cholera Epidemic Is Linked to a Hypervirulent Strain. Infection and Immunity, 2016, 84, 2473-2481.	2.2	48
30	Species-dependent hydrodynamics of flagellum-tethered bacteria in early biofilm development. Journal of the Royal Society Interface, 2016, 13, 20150966.	3.4	23
31	The LonA Protease Regulates Biofilm Formation, Motility, Virulence, and the Type VI Secretion System in Vibrio cholerae. Journal of Bacteriology, 2016, 198, 973-985.	2.2	61
32	Biofilm Formation and Detachment in Gram-Negative Pathogens Is Modulated by Select Bile Acids. PLoS ONE, 2016, 11, e0149603.	2.5	31
33	Biofilm Matrix Proteins. Microbiology Spectrum, 2015, 3, .	3.0	193
34	<scp>CdiA</scp> promotes receptorâ€independent intercellular adhesion. Molecular Microbiology, 2015, 98, 175-192.	2.5	56
35	C-di-GMP Regulates Motile to Sessile Transition by Modulating MshA Pili Biogenesis and Near-Surface Motility Behavior in Vibrio cholerae. PLoS Pathogens, 2015, 11, e1005068.	4.7	108
36	Systematic Identification of Cyclic-di-GMP Binding Proteins in Vibrio cholerae Reveals a Novel Class of Cyclic-di-GMP-Binding ATPases Associated with Type II Secretion Systems. PLoS Pathogens, 2015, 11, e1005232.	4.7	107

Fitnat H Yildiz

#	Article	IF	CITATIONS
37	Identification and Characterization of VpsR and VpsT Binding Sites in Vibrio cholerae. Journal of Bacteriology, 2015, 197, 1221-1235.	2.2	68
38	Polymyxin B Resistance and Biofilm Formation in Vibrio cholerae Are Controlled by the Response Regulator CarR. Infection and Immunity, 2015, 83, 1199-1209.	2.2	58
39	Temperature affects câ€diâ€ <scp>GMP</scp> signalling and biofilm formation in <scp><i>V</i></scp> <i>ibrio cholerae</i> . Environmental Microbiology, 2015, 17, 4290-4305.	3.8	96
40	Vibrio cholerae Response Regulator VxrB Controls Colonization and Regulates the Type VI Secretion System. PLoS Pathogens, 2015, 11, e1004933.	4.7	69
41	Living in the matrix: assembly and control of Vibrio cholerae biofilms. Nature Reviews Microbiology, 2015, 13, 255-268.	28.6	342
42	Vibrio cholerae Utilizes Direct sRNA Regulation in Expression of a Biofilm Matrix Protein. PLoS ONE, 2014, 9, e101280.	2.5	24
43	Molecular Determinants of Mechanical Properties of V.Âcholerae Biofilms atÂthe Air-Liquid Interface. Biophysical Journal, 2014, 107, 2245-2252.	0.5	55
44	The Type II Secretion System Delivers Matrix Proteins for Biofilm Formation by Vibrio cholerae. Journal of Bacteriology, 2014, 196, 4245-4252.	2.2	45
45	Vibrio cholerae use pili and flagella synergistically to effect motility switching and conditional surface attachment. Nature Communications, 2014, 5, 4913.	12.8	165
46	Cyclic Di-GMP Signaling in Vibrio cholerae. , 2014, , 253-269.		2
47	Structural Basis for Biofilm Formation via the Vibrio cholerae Matrix Protein RbmA. Journal of Bacteriology, 2013, 195, 3277-3286.	2.2	84
48	Cellular Levels and Binding of c-di-GMP Control Subcellular Localization and Activity of the Vibrio cholerae Transcriptional Regulator VpsT. PLoS Pathogens, 2012, 8, e1002719.	4.7	52
49	Molecular Architecture and Assembly Principles of <i>Vibrio cholerae</i> Biofilms. Science, 2012, 337, 236-239.	12.6	340
50	Role of Vibrio polysaccharide (vps) genes in VPS production, biofilm formation and Vibrio cholerae pathogenesis. Microbiology (United Kingdom), 2010, 156, 2757-2769.	1.8	211
51	Identification and Characterization of a Phosphodiesterase That Inversely Regulates Motility and Biofilm Formation in <i>Vibrio cholerae</i> . Journal of Bacteriology, 2010, 192, 4541-4552.	2.2	76
52	<i>Vibrio cholerae</i> VpsT Regulates Matrix Production and Motility by Directly Sensing Cyclic di-GMP. Science, 2010, 327, 866-868.	12.6	397
53	Overexpression of VpsS, a Hybrid Sensor Kinase, Enhances Biofilm Formation in <i>Vibrio cholerae</i> . Journal of Bacteriology, 2009, 191, 5147-5158.	2.2	66
54	Vibrio biofilms: so much the same yet so different. Trends in Microbiology, 2009, 17, 109-118.	7.7	399

FITNAT H YILDIZ

#	Article	IF	CITATIONS
55	Identification and Characterization of Cyclic Diguanylate Signaling Systems Controlling Rugosity in <i>Vibrio cholerae</i> . Journal of Bacteriology, 2008, 190, 7392-7405.	2.2	108
56	Regulation of Rugosity and Biofilm Formation in Vibrio cholerae : Comparison of VpsT and VpsR Regulons and Epistasis Analysis of vpsT , vpsR , and hapR. Journal of Bacteriology, 2007, 189, 388-402.	2.2	170
57	The rbmBCDEF Gene Cluster Modulates Development of Rugose Colony Morphology and Biofilm Formation in Vibrio cholerae. Journal of Bacteriology, 2007, 189, 2319-2330.	2.2	166
58	Smooth to rugose phase variation in Vibrio cholerae can be mediated by a single nucleotide change that targets câ€diâ€GMP signalling pathway. Molecular Microbiology, 2007, 63, 995-1007.	2.5	115
59	Cyclic-diGMP signal transduction systems in Vibrio cholerae: modulation of rugosity and biofilm formation. Molecular Microbiology, 2006, 60, 331-348.	2.5	179
60	Transcriptome and Phenotypic Responses of Vibrio cholerae to Increased Cyclic di-GMP Level. Journal of Bacteriology, 2006, 188, 3600-3613.	2.2	189
61	Identification and Characterization of RbmA, a Novel Protein Required for the Development of Rugose Colony Morphology and Biofilm Structure in Vibrio cholerae. Journal of Bacteriology, 2006, 188, 1049-1059.	2.2	146
62	Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16819-16824.	7.1	288
63	VpsT Is a Transcriptional Regulator Required for Expression of vps Biosynthesis Genes and the Development of Rugose Colonial Morphology in Vibrio cholerae O1 El Tor. Journal of Bacteriology, 2004, 186, 1574-1578.	2.2	175
64	Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Molecular Microbiology, 2004, 53, 497-515.	2.5	247
65	VpsR, a Member of the Response Regulators of the Two-Component Regulatory Systems, Is Required for Expression of vps Biosynthesis Genes and EPS ETr -Associated Phenotypes in Vibrio cholerae O1 El Tor. Journal of Bacteriology, 2001, 183, 1716-1726.	2.2	215

Biofilm Matrix Proteins. , 0, , 201-222.

10