Isaac B Bersuker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5450258/publications.pdf

Version: 2024-02-01

42 papers

2,758 citations

394421 19 h-index 265206 42 g-index

44 all docs 44 docs citations

times ranked

44

2477 citing authors

#	Article	IF	CITATIONS
1	Origin of Perovskite Multiferroicity and Magnetoelectric-Multiferroic Effects—The Role of Electronic Spin in Spontaneous Polarization of Crystals. Magnetochemistry, 2022, 8, 9.	2.4	2
2	Jahn–Teller and Pseudo-Jahn–Teller Effects: From Particular Features to General Tools in Exploring Molecular and Solid State Properties. Chemical Reviews, 2021, 121, 1463-1512.	47.7	67
3	Pseudo Jahn-Teller Origin of the Proton-transfer Energy Barrier in the Hydrogen-bonded [FHF]-System. Chemistry Journal of Moldova, 2021, 16, 115-120.	0.6	4
4	The Jahn–Teller and Pseudo-Jahn–Teller Effects: A Unique and Only Source of Spontaneous Symmetry Breaking in Atomic Matter. Symmetry, 2021, 13, 1577.	2.2	7
5	Spin Crossover and Magnetic-Dielectric Bistability Induced by Hidden Pseudo-Jahn–Teller Effect. Magnetochemistry, 2020, 6, 64.	2.4	4
6	Perovskite Crystals: Unique Pseudo-Jahn–Teller Origin of Ferroelectricity, Multiferroicity, Permittivity, Flexoelectricity, and Polar Nanoregions. Condensed Matter, 2020, 5, 68.	1.8	23
7	Sudden polarization and zwitterion formation as a pseudo-Jahn–Teller effect: a new insight into the photochemistry of alkenes. Physical Chemistry Chemical Physics, 2019, 21, 10677-10692.	2.8	11
8	Interplay Between Relaxation and Resonance in Ultrasound Attenuation by the Cubic Crystal ZnSe:Cr. Physica Status Solidi (B): Basic Research, 2019, 256, 1800635.	1.5	2
9	Origin of polar nanoregions and relaxor properties of ferroelectrics. Physical Review B, 2018, 98, .	3.2	25
10	Magnetoacoustic Relaxation by Cr ²⁺ Jahn–Teller Centers Revealed from Elastic Moduli. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800586.	1.8	1
11	Acoustic Properties of Crystals with Jahn–Teller Impurities: Elastic Moduli and Relaxation Time. Application to SrF2:Cr2+. Journal of the Physical Society of Japan, 2017, 86, 114604.	1.6	6
12	Geometry, Electronic Structure, and Pseudo Jahn-Teller Effect in Tetrasilacyclobutadiene Analogues. Scientific Reports, 2016, 6, 23315.	3.3	19
13	Magnetic Field Induced Relaxation Attenuation of Ultrasound by Jahn–Teller Centers: Application to ZnSe:Cr2+. Applied Magnetic Resonance, 2016, 47, 685-692.	1.2	2
14	Giant permittivity and electrostriction induced by dynamic Jahn-Teller and pseudo Jahn-Teller effects. Applied Physics Letters, 2015, 107, .	3.3	18
15	Pseudo Jahn–Teller effect in distortion and restoration of planar configurations of tetra-heterocyclic 1,2-diazetes C2N2E4, E = H, F, Cl, Br. Chemical Physics, 2015, 460, 106-110.	1.9	24
16	Pseudo Jahn–Teller origin of instability of planar configurations of hexa-heterocycles C4N2H4X2 (X =) Tj ETQq	0 0 _{2.5} rgBT	Oyerlock 10
17	Novel Effect Induced by Pseudo-Jahn–Teller Interactions: Broken Cylindrical Symmetry in Linear Molecules. Journal of Chemical Theory and Computation, 2014, 10, 4377-4388.	5.3	9
18	Pseudo-Jahn–Teller Effect—A Two-State Paradigm in Formation, Deformation, and Transformation of Molecular Systems and Solids. Chemical Reviews, 2013, 113, 1351-1390.	47.7	412

#	ARTICLE Pseudo Jahn-Teller Origin of Perovskite Multiferroics, Magnetic-Ferroelectric Crossover, and	IF	CITATIONS
19	Magnetoelectric Effects: The <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mi>d</mml:mi> <mml:mi>d</mml:mi>ddddd<mml:mn>10</mml:mn> <mml:mn> <mml:msup></mml:msup></mml:mn></mml:msup></mml:math>	7.8 - <td>112 ath>Probler</td>	112 ath>Probler
20	Comment on "Frequency Upshift in BO ₂ and CO ₂ ⁺ upon Electronic Excitation: A Twin-State Model Rationalization― Journal of Physical Chemistry A, 2012, 116, 1316-1317.	2.5	3
21	Pseudo jahnâ€teller origin of bending distortions in rennerâ€teller molecules and its spectroscopic implications. International Journal of Quantum Chemistry, 2012, 112, 3025-3032.	2.0	19
22	Pseudo Jahn–Teller origin of cis–trans and other conformational changes. The role of double bonds. Physical Chemistry Chemical Physics, 2011, 13, 3502.	2.8	21
23	Class of Molecular and Solid State Systems with Correlated Magnetic and Dielectric Bistabilities Induced by the Pseudo Jahn-Teller Effect. Physical Review Letters, 2011, 106, 246406.	7.8	29
24	Jahn–Teller, pseudo Jahn–Teller, and Renner–Teller effects in systems with fractional charges. Computational and Theoretical Chemistry, 2011, 976, 113-119.	2.5	12
25	Recent Developments in the Jahn–Teller Effect Theory. Springer Series in Chemical Physics, 2009, , 3-23.	0.2	14
26	Combined Jahna^'Teller and Pseudo-Jahna^'Teller Effect in the CO ₃ Molecule: A Seven-State Six-Mode Problem. Journal of Chemical Theory and Computation, 2009, 5, 2679-2686.	5.3	39
27	QSAR without arbitrary descriptors: the electron-conformational method. Journal of Computer-Aided Molecular Design, 2008, 22, 423-430.	2.9	16
28	Lost Topological (Berry) Phase Factor in Electronic Structure Calculations. Example: The Ozone Molecule. Physical Review Letters, 2006, 96, 163005.	7.8	50
29	Orbital disproportionation and spin crossover as a pseudo Jahn-Teller effect. Journal of Chemical Physics, 2006, 125, 104102.	3.0	45
30	Pseudo-Jahn-Teller origin of geometry and pseudorotations in second row tetra-atomic clusters X4 (X=Na,Mg,Al,Si,P,S). Journal of Chemical Physics, 2006, 124, 044321.	3.0	16
31	Quantitative Drug Activity Prediction for Inhibitors of Human Breast Carcinoma. Pharmaceutical Medicine, 2004, 18, 81-89.	0.4	12
32	Pseudo Jahn–Teller origin of instability of molecular high-symmetry configurations: Novel numerical method and results. Journal of Chemical Physics, 2002, 117, 10478-10486.	3.0	49
33	Modern Aspects of the Jahnâ^'Teller Effect Theory and Applications To Molecular Problems. Chemical Reviews, 2001, 101, 1067-1114.	47.7	613
34	Pharmacophore Identification and Bioactivity Prediction for Group I Metabotropic Glutamate Receptor Agonists by the Electron-Conformational QSAR Method. QSAR and Combinatorial Science, 2001, 20, 327-334.	1.2	12
35	Methods of Combined Quantum/Classical (QM/MM) Modeling for Large Organometallic and Metallobiochemical Systems. Computational Chemistry - Reviews of Current Trends, 2001, , 69-135.	0.4	6
36	Multiple lines of conical intersections and nondegenerate ground state in T⊗t2 Jahn–Teller systems. Journal of Chemical Physics, 2000, 112, 8470-8482.	3.0	23

#	Article	IF	Citations
37	Multiconical Intersections and Nondegenerate Ground State inE⊗eJahn-Teller Systems. Physical Review Letters, 1999, 83, 3009-3012.	7.8	66
38	A Method of Hybrid Quantum-Classical Calculations for Large Organometallic-Metallobiochemical Systems. ACS Symposium Series, 1998, , 66-91.	0.5	4
39	Limitations of density functional theory in application to degenerate states. Journal of Computational Chemistry, 1997, 18, 260-267.	3.3	58
40	Limitations of density functional theory in application to degenerate states. , 1997, 18, 260.		1
41	REVIEW: THE CONCEPT OF VIBRONIC INTERACTIONS IN CRYSTAL STEREOCHEMISTRY OF TRANSITION METAL COMPOUNDS. Journal of Coordination Chemistry, 1995, 34, 289-338.	2.2	15
42	On the origin of dynamic instability of molecular systems. Theoretica Chimica Acta, 1984, 66, 161-172.	0.8	88