
Vincent Colot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5449989/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Role of transposable elements in heterochromatin and epigenetic control. Nature, 2004, 430, 471-476.	27.8	1,103
2	Understanding mechanisms of novel gene expression in polyploids. Trends in Genetics, 2003, 19, 141-147.	6.7	812
3	Assessing the Impact of Transgenerational Epigenetic Variation on Complex Traits. PLoS Genetics, 2009, 5, e1000530.	3.5	669
4	Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO Journal, 2011, 30, 1928-1938.	7.8	600
5	Arabidopsis TFL2/LHP1 Specifically Associates with Genes Marked by Trimethylation of Histone H3 Lysine 27. PLoS Genetics, 2007, 3, e86.	3.5	537
6	Profiling histone modification patterns in plants using genomic tiling microarrays. Nature Methods, 2005, 2, 213-218.	19.0	521
7	DNA Methylation and Epigenetic Inheritance in Plants and Filamentous Fungi. Science, 2001, 293, 1070-1074.	12.6	456
8	Dependence of Heterochromatic Histone H3 Methylation Patterns on the <i>Arabidopsis</i> Gene< <i>DDM1</i> . Science, 2002, 297, 1871-1873.	12.6	417
9	Mapping the Epigenetic Basis of Complex Traits. Science, 2014, 343, 1145-1148.	12.6	403
10	Epigenetic Natural Variation in Arabidopsis thaliana. PLoS Biology, 2007, 5, e174.	5.6	400
11	Reinforcement of silencing at transposons and highly repeated sequences requires the concerted action of two distinct RNA polymerases IV in Arabidopsis. Genes and Development, 2005, 19, 2030-2040.	5.9	347
12	A Role for RNAi in the Selective Correction of DNA Methylation Defects. Science, 2009, 323, 1600-1604.	12.6	338
13	Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytologist, 2013, 197, 314-322.	7.3	330
14	Polycomb Repressive Complex 2 Controls the Embryo-to-Seedling Phase Transition. PLoS Genetics, 2011, 7, e1002014.	3.5	318
15	Eukaryotic DNA methylation as an evolutionary device. BioEssays, 1999, 21, 402-411.	2.5	287
16	Versatile Gene-Specific Sequence Tags for Arabidopsis Functional Genomics: Transcript Profiling and Reverse Genetics Applications. Genome Research, 2004, 14, 2176-2189.	5.5	282
17	The Arabidopsis thaliana mobilome and its impact at the species level. ELife, 2016, 5, .	6.0	271
18	Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biology, 2013, 14, R59.	8.8	264

#	Article	IF	CITATIONS
19	Reconstructing de novo silencing of an active plant retrotransposon. Nature Genetics, 2013, 45, 1029-1039.	21.4	248
20	Plant Transgenerational Epigenetics. Annual Review of Genetics, 2016, 50, 467-491.	7.6	236
21	The Arabidopsis miR472-RDR6 Silencing Pathway Modulates PAMP- and Effector-Triggered Immunity through the Post-transcriptional Control of Disease Resistance Genes. PLoS Pathogens, 2014, 10, e1003883.	4.7	233
22	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	7.3	186
23	Epigenome dynamics: a quantitative genetics perspective. Nature Reviews Genetics, 2008, 9, 883-890.	16.3	183
24	DNA methylation dynamics during early plant life. Genome Biology, 2017, 18, 179.	8.8	182
25	Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nature Communications, 2014, 5, 3027.	12.8	179
26	Epigenetic Basis of Morphological Variation and Phenotypic Plasticity in <i>Arabidopsis thaliana</i> . Plant Cell, 2015, 27, 337-348.	6.6	178
27	Epigenetic diversity increases the productivity and stability of plant populations. Nature Communications, 2013, 4, 2875.	12.8	163
28	Variation in crossing-over rates across chromosome 4 of <i>Arabidopsis thaliana</i> reveals the presence of meiotic recombination "hot spots― Genome Research, 2006, 16, 106-114.	5.5	162
29	Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. Nature Plants, 2015, 1, 14023.	9.3	156
30	Features of the <i>Arabidopsis</i> recombination landscape resulting from the combined loss of sequence variation and DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16240-16245.	7.1	145
31	Translational misreading: a tRNA modification counteracts a +2 ribosomal frameshift. Genes and Development, 2001, 15, 2295-2306.	5.9	142
32	Genome-wide evidence for local DNA methylation spreading from small RNA-targeted sequences in Arabidopsis. Nucleic Acids Research, 2011, 39, 6919-6931.	14.5	142
33	Epialleles in plant evolution. Genome Biology, 2012, 13, 249.	9.6	142
34	Interchromosomal Transfer of Epigenetic States in Ascobolus: Transfer of DNA Methylation Is Mechanistically Related to Homologous Recombination. Cell, 1996, 86, 855-864.	28.9	135
35	NERD, a Plant-Specific GW Protein, Defines an Additional RNAi-Dependent Chromatin-Based Pathway in Arabidopsis. Molecular Cell, 2012, 48, 121-132.	9.7	134
36	Transposition favors the generation of large effect mutations that may facilitate rapid adaption. Nature Communications, 2019, 10, 3421.	12.8	134

#	Article	IF	CITATIONS
37	Molecular characterization of an active wheat LMW glutenin gene and its relation to other wheat and barley prolamin genes. Molecular Genetics and Genomics, 1989, 216, 81-90.	2.4	121
38	Changes in 5S rDNA Chromatin Organization and Transcription during Heterochromatin Establishment in Arabidopsis. Plant Cell, 2003, 15, 2929-2939.	6.6	120
39	Profiling DNA methylation patterns using genomic tiling microarrays. Nature Methods, 2005, 2, 219-224.	19.0	119
40	A versatile Multisite Gatewayâ€compatible promoter and transgenic line collection for cell typeâ€specific functional genomics in Arabidopsis. Plant Journal, 2016, 85, 320-333.	5.7	116
41	Histone H2B Monoubiquitination Facilitates the Rapid Modulation of Gene Expression during Arabidopsis Photomorphogenesis. PLoS Genetics, 2012, 8, e1002825.	3.5	115
42	Extensive Natural Epigenetic Variation at a De Novo Originated Gene. PLoS Genetics, 2013, 9, e1003437.	3.5	114
43	Genome-Wide Epigenetic Perturbation Jump-Starts Patterns of Heritable Variation Found in Nature. Genetics, 2011, 188, 1015-1017.	2.9	109
44	Promoter DNA Hypermethylation and Gene Repression in Undifferentiated Arabidopsis Cells. PLoS ONE, 2008, 3, e3306.	2.5	99
45	Chromatin indexing in Arabidopsis: an epigenomic tale of tails and more. Trends in Genetics, 2009, 25, 511-517.	6.7	98
46	The impact of transposable elements on tomato diversity. Nature Communications, 2020, 11, 4058.	12.8	92
47	Misregulation of AUXIN RESPONSE FACTOR 8 Underlies the Developmental Abnormalities Caused by Three Distinct Viral Silencing Suppressors in Arabidopsis. PLoS Pathogens, 2011, 7, e1002035.	4.7	85
48	Molecular, genetic and evolutionary analysis of a paracentric inversion in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 159-178.	5.7	81
49	Genetic and environmental modulation of transposition shapes the evolutionary potential of Arabidopsis thaliana. Genome Biology, 2021, 22, 138.	8.8	76
50	Highly Dynamic and Sex-Specific Expression of microRNAs During Early ES Cell Differentiation. PLoS Genetics, 2009, 5, e1000620.	3.5	73
51	How does epigenetics influence the course of evolution?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200111.	4.0	73
52	Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. ELife, 2019, 8, .	6.0	73
53	Relaxed purifying selection in autopolyploids drives transposable element over-accumulation which provides variants for local adaptation. Nature Communications, 2019, 10, 5818.	12.8	70
54	The development of an Arabidopsis model system for genome-wide analysis of polyploidy effects. Biological Journal of the Linnean Society, 2004, 82, 689-700.	1.6	69

#	Article	IF	CITATIONS
55	Improved detection and annotation of transposable elements in sequenced genomes using multiple reference sequence sets. Genomics, 2008, 91, 467-475.	2.9	67
56	Mobilization of a plant transposon by expression of the transposon-encoded anti-silencing factor. EMBO Journal, 2013, 32, 2407-2417.	7.8	60
57	Gene body DNA methylation in plants: a means to an end or an end to a means?. EMBO Journal, 2009, 28, 997-998.	7.8	58
58	Extensive, Nonrandom Diversity of Excision Footprints Generated by <i>Ds</i> -Like Transposon <i>Ascot-1</i> Suggests New Parallels with V(D)J Recombination. Molecular and Cellular Biology, 1998, 18, 4337-4346.	2.3	56
59	Genome-Wide Negative Feedback Drives Transgenerational DNA Methylation Dynamics in Arabidopsis. PLoS Genetics, 2015, 11, e1005154.	3.5	56
60	Arabidopsis epigenetics: when RNA meets chromatin. Current Opinion in Plant Biology, 2005, 8, 142-147.	7.1	55
61	Additive inheritance of histone modifications in <i>Arabidopsis thaliana</i> intraâ€specific hybrids. Plant Journal, 2011, 67, 691-700.	5.7	48
62	Mild drought in the vegetative stage induces phenotypic, gene expression, and DNA methylation plasticity in Arabidopsis but no transgenerational effects. Journal of Experimental Botany, 2020, 71, 3588-3602.	4.8	48
63	The Wheat Transcriptional Activator SPA: A Seed-Specific bZIP Protein That Recognizes the GCN4-Like Motif in the Bifactorial Endosperm Box of Prolamin Genes. Plant Cell, 1997, 9, 171.	6.6	47
64	Epigenomic mapping in Arabidopsis using tiling microarrays. Chromosome Research, 2005, 13, 299-308.	2.2	46
65	Quantitative resistance to clubroot infection mediated by transgenerational epigenetic variation in Arabidopsis. New Phytologist, 2019, 222, 468-479.	7.3	42
66	Male fertility in Arabidopsis requires active DNA demethylation of genes that control pollen tube function. Nature Communications, 2021, 12, 410.	12.8	41
67	The epiallelic potential of transposable elements and its evolutionary significance in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200123.	4.0	37
68	The maize transcription factor Opaque-2 activates a wheat glutenin promoter in plant and yeast cells. Plant Molecular Biology, 1995, 29, 711-720.	3.9	36
69	TE-Tracker: systematic identification of transposition events through whole-genome resequencing. BMC Bioinformatics, 2014, 15, 377.	2.6	27
70	Differential retention of transposable element-derived sequences in outcrossing Arabidopsis genomes. Mobile DNA, 2019, 10, 30.	3.6	26
71	Polycomb mutant partially suppresses DNA hypomethylation–associated phenotypes in Arabidopsis. Life Science Alliance, 2021, 4, e202000848.	2.8	23
72	Methylation of repeated DNA sequences and genome stability in Ascobolus immersus. Canadian Journal of Botany, 1995, 73, 221-225.	1.1	19

#	Article	IF	CITATIONS
73	DNA DAMAGE BINDING PROTEIN2 Shapes the DNA Methylation Landscape. Plant Cell, 2016, 28, 2043-2059.	6.6	16
74	Genome-Wide Analysis of DNA Methylation in Arabidopsis Using MeDIP-Chip. Methods in Molecular Biology, 2014, 1112, 125-149.	0.9	15
75	Evaluation of MeDIP-Chip in the Context of Whole-Genome Bisulfite Sequencing (WGBS-Seq) in Arabidopsis. Methods in Molecular Biology, 2013, 1067, 203-224.	0.9	11
76	Efficient Detection of Transposable Element Insertion Polymorphisms Between Genomes Using Short-Read Sequencing Data. Methods in Molecular Biology, 2021, 2250, 157-169.	0.9	10
77	Profiling spatial enrichment of chromatin marks suggests an additional epigenomic dimension in gene regulation. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2013, 7, 80-87.	1.1	9
78	Comparative epigenomics in the Brassicaceae reveals two evolutionarily conserved modes of PRC2-mediated gene regulation. Genome Biology, 2017, 18, 207.	8.8	8
79	Fast coâ€evolution of antiâ€silencing systems shapes the invasiveness of <i>Mu</i> â€like DNA transposons in eudicots. EMBO Journal, 2022, 41, e110070.	7.8	7
80	Chromosome Structural Proteins and RNA-Mediated Epigenetic Silencing. Developmental Cell, 2008, 14, 813-814.	7.0	5
81	Interaction of a tryptophan-containing peptide with chromatin core particles. FEBS Letters, 1984, 169, 205-209.	2.8	3
82	Detection of Transposable Element Insertions in Arabidopsis Using Sequence Capture. Methods in Molecular Biology, 2021, 2250, 141-155.	0.9	3