
Vincenzo Palleschi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5447900/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser-Induced Breakdown Spectroscopy (LIBS). , 2006, , .		778
2	New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy. Applied Spectroscopy, 1999, 53, 960-964.	2.2	736
3	Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 86-95.	2.9	514
4	Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1115-1130.	2.9	398
5	Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the art. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 1-14.	2.9	362
6	A procedure for correcting self-absorption in calibration free-laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 339-353.	2.9	293
7	Evaluation of self-absorption coefficients of aluminum emission lines in laser-induced breakdown spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1573-1579.	2.9	261
8	A numerical study of expected accuracy and precision in Calibration-Free Laser-Induced Breakdown Spectroscopy in the assumption of ideal analytical plasma. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1287-1302.	2.9	204
9	Fast and precise algorithm for computer simulation of stochastic differential equations. Physical Review A, 1989, 40, 3381-3386.	2.5	193
10	Trace Element Analysis in Water by the Laser-Induced Breakdown Spectroscopy Technique. Applied Spectroscopy, 1997, 51, 1102-1105.	2.2	166
11	Three-dimensional analysis of laser induced plasmas in single and double pulse configuration. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 723-735.	2.9	150
12	Influence of ambient gas pressure on laser-induced breakdown spectroscopy technique in the parallel double-pulse configuration. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1907-1917.	2.9	145
13	Nematic-isotropic interface of some members of the homologous series of 4-cyano-4′-(n-alkyl)biphenyl liquid crystals. Physical Review A, 1984, 30, 3241-3251.	2.5	129
14	Calibration free laser-induced breakdown spectroscopy of oxide materials. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 671-679.	2.9	124
15	Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis. Applied Optics, 2003, 42, 6133.	2.1	119
16	Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review. Journal of Analytical Atomic Spectrometry, 2019, 34, 81-103.	3.0	118
17	Almost Critical Behavior of the Anchoring Energy at the Interface between a Nematic Liquid Crystal and a SiO Substrate. Physical Review Letters, 1985, 55, 1681-1684.	7.8	117
18	Elemental analysis by surface-enhanced Laser-Induced Breakdown Spectroscopy combined with liquid–liquid microextraction. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 79-80, 88-93.	2.9	117

#	Article	IF	CITATIONS
19	Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 1294-1303.	2.9	116
20	Effect of laser pulse energies in laser induced breakdown spectroscopy in double-pulse configuration. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 1392-1401.	2.9	112
21	Modì: a new mobile instrument for in situ double-pulse LIBS analysis. Analytical and Bioanalytical Chemistry, 2006, 385, 240-247.	3.7	105
22	Laser-induced breakdown spectroscopy for human and animal health: A review. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 152, 123-148.	2.9	104
23	Double pulse, calibration-free laser-induced breakdown spectroscopy: A new technique for in situ standard-less analysis of polluted soils. Applied Geochemistry, 2006, 21, 748-755.	3.0	102
24	Trace pollutants analysis in soil by a time-resolved laser-induced breakdown spectroscopy technique. Applied Physics B: Lasers and Optics, 1996, 63, 185-190.	2.2	99
25	Effect of Laser-Induced Crater Depth in Laser-Induced Breakdown Spectroscopy Emission Features. Applied Spectroscopy, 2005, 59, 853-860.	2.2	99
26	Characterization of azurite and lazurite based pigments by laser induced breakdown spectroscopy and micro-Raman spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2001, 56, 915-922.	2.9	95
27	Characterization of a collinear double pulse laser-induced plasma at several ambient gas pressures by spectrally- and time-resolved imaging. Applied Physics B: Lasers and Optics, 2005, 80, 559-568.	2.2	83
28	One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 51-56.	2.9	82
29	Spectroscopic and shadowgraphic analysis of laser induced plasmas in the orthogonal double pulse pre-ablation configuration. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 340-350.	2.9	81
30	Self-calibrated quantitative elemental analysis by laser-induced plasma spectroscopy: application to pigment analysis. Journal of Cultural Heritage, 2000, 1, S281-S286.	3.3	80
31	A fast and accurate method for the determination of precious alloys caratage by Laser Induced Plasma Spectroscopy. European Physical Journal D, 2001, 13, 373-377.	1.3	77
32	Comparison of detection limits, for two metallic matrices, of laser-induced breakdown spectroscopy in the single and double-pulse configurations. Analytical and Bioanalytical Chemistry, 2006, 385, 316-325.	3.7	72
33	Industrial applications of laser-induced breakdown spectroscopy: a review. Analytical Methods, 2020, 12, 1014-1029.	2.7	72
34	Observation of different mass removal regimes during the laser ablation of an aluminium target in air. Journal of Analytical Atomic Spectrometry, 2008, 23, 1518.	3.0	71
35	Spatial distribution of hydrogen and other emitters in aluminum laser-induced plasma in air and consequences on spatially integrated Laser-Induced Breakdown Spectroscopy measurements. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 980-987.	2.9	69
36	A review of the current analytical approaches for evaluating, compensating and exploiting self-absorption in Laser Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 169, 105878.	2.9	69

#	Article	IF	CITATIONS
37	An artificial neural network approach to laser-induced breakdown spectroscopy quantitative analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 99, 52-58.	2.9	68
38	Effect of target composition on the emission enhancement observed in Double-Pulse Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 312-323.	2.9	65
39	Quantitative analysis of aluminium alloys by low-energy, high-repetition rate laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2006, 21, 697.	3.0	60
40	Classical univariate calibration and partial least squares for quantitative analysis of brass samples by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 658-663.	2.9	59
41	Classification of wrought aluminum alloys by Artificial Neural Networks evaluation of Laser Induced Breakdown Spectroscopy spectra from aluminum scrap samples. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 134, 52-57.	2.9	58
42	A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra. Applied Physics B: Lasers and Optics, 2015, 118, 353-360.	2.2	56
43	In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1512-1518.	2.9	55
44	Investigation on the role of air in the dynamical evolution and thermodynamic state of a laser-induced aluminium plasma by spatial- and time-resolved spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 787-796.	2.9	54
45	Detection of mercury in air by time-resolved laser-induced breakdown spectroscopy technique. Laser and Particle Beams, 1994, 12, 525-530.	1.0	52
46	Comparison between single- and double-pulse LIBS at different air pressures on silicon target. Applied Physics B: Lasers and Optics, 2006, 83, 651-657.	2.2	51
47	Time-resolved LIBS experiment for quantitative determination of pollutant concentrations in air. Laser and Particle Beams, 1991, 9, 633-639.	1.0	50
48	Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1181-1192.	2.9	50
49	Analytical and mathematical methods for revealing hidden details in ancient manuscripts and paintings: A review. Journal of Advanced Research, 2019, 17, 31-42.	9.5	50
50	X-Ray Fluorescence and Laser-Induced Breakdown Spectroscopy analysis of Roman silver denarii. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 74-75, 156-161.	2.9	48
51	Archaeometric Analysis of Ancient Copper Artefacts by Laser-Induced Breakdown Spectroscopy Technique. Mikrochimica Acta, 2005, 152, 105-111.	5.0	47
52	Effect of laser parameters on plasma shielding in single and double pulse configurations during the ablation of an aluminium target. Journal Physics D: Applied Physics, 2009, 42, 225207.	2.8	47
53	On the determination of plasma electron number density from Stark broadened hydrogen Balmer series lines in Laser-Induced Breakdown Spectroscopy experiments. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 88, 98-103.	2.9	46
54	Spherical shock waves in laser produced plasmas in gas. Optics Communications, 1988, 69, 141-146.	2.1	44

#	Article	IF	CITATIONS
55	Temporal and Spatial Evolution of a Laser-Induced Plasma from a Steel Target. Applied Spectroscopy, 2003, 57, 715-721.	2.2	44
56	From Calibration-Free to Fundamental Parameters Analysis: A comparison of three recently proposed approaches. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 124, 40-46.	2.9	44
57	Measurements of the interfacial tension between nematic and isotropic phase of some cyanobiphenyls. Journal of Chemical Physics, 1984, 81, 6254-6258.	3.0	42
58	Plasma processes and emission spectra in laser induced plasmas: A point of view. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 100, 180-188.	2.9	42
59	Multivariate calibration in Laser-Induced Breakdown Spectroscopy quantitative analysis: The dangers of a â€ [~] black box' approach and how to avoid them. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 144, 46-54.	2.9	42
60	Study of foxing stains on paper by chemical methods, infrared spectroscopy, micro-X-ray fluorescence spectrometry and laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2002, 57, 1235-1249.	2.9	40
61	Numerical solution of the Fokker-Planck equation: A fast and accurate algorithm. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 146, 378-386.	2.1	39
62	CF-LIPS: A new approach to LIPS spectra analysis. Laser and Particle Beams, 1999, 17, 793-797.	1.0	39
63	Determination of the deuterium/hydrogen ratio in gas reaction products by laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2006, 61, 797-802.	2.9	39
64	Wood coated with plasma-polymer for water repellence. Wood Science and Technology, 2008, 42, 149-160.	3.2	39
65	Shock Waves in Laser-Induced Plasmas. Atoms, 2019, 7, 57.	1.6	39
66	Measurement of Stark broadening of Mn I and Mn II spectral lines in plasmas used for Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 1237-1245.	2.9	38
67	Characterization of historical mortars from the bell tower of St. Nicholas church (Pisa, Italy). Construction and Building Materials, 2014, 69, 203-212.	7.2	38
68	Quantitative analysis of metals in waste foundry sands by calibration free-laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 131, 58-65.	2.9	38
69	Extracting Time-Resolved Information from Time-Integrated Laser-Induced Breakdown Spectra. Journal of Spectroscopy, 2014, 2014, 1-5.	1.3	36
70	Fast quantitative elemental mapping of highly inhomogeneous materials by micro-Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 146, 9-15.	2.9	36
71	Determination of Ash Content of coal by Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 155, 123-126.	2.9	36
72	Molecular orientation and anchoring energy at the nematic-isotropic interface of 7CB. Journal De Physique (Paris), Lettres, 1984, 45, 313-318.	2.8	36

#	Article	IF	CITATIONS
73	Micro-Laser-Induced Breakdown Spectroscopy (Micro-LIBS) Study on Ancient Roman Mortars. Applied Spectroscopy, 2017, 71, 721-727.	2.2	35
74	Combination of the ionic-to-atomic line intensity ratios from two test elements for the diagnostic of plasma temperature and electron number density in Inductively Coupled Plasma Atomic Emission Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 435-443.	2.9	33
75	Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 141, 53-58.	2.9	31
76	Determination of excitation temperature in laser-induced plasmas using columnar density Saha-Boltzmann plot. Journal of Advanced Research, 2019, 18, 1-7.	9.5	30
77	Classification of sedimentary and igneous rocks by laser induced breakdown spectroscopy and nanoparticle-enhanced laser induced breakdown spectroscopy combined with principal component analysis and graph theory. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 158, 105622.	2.9	30
78	Progress towards an unassisted element identification from Laser Induced Breakdown Spectra with automatic ranking techniques inspired by text retrieval. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 664-670.	2.9	29
79	A New Method for Determination of Self-Absorption Coefficients of Emission Lines in Laser-Induced Breakdown Spectroscopy Experiments. Applied Spectroscopy, 2010, 64, 320-323.	2.2	29
80	Recovery of archaeological wall paintings using novel multispectral imaging approaches. Heritage Science, 2013, 1, .	2.3	29
81	Application of Laser Induced Breakdown Spectroscopy to the identification of emeralds from different synthetic processes. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 102, 48-51.	2.9	29
82	Fast analysis of complex metallic alloys by double-pulse time-integrated Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 1068-1072.	2.9	28
83	Comparison of brass alloys composition by laser-induced breakdown spectroscopy and self-organizing maps. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 103-104, 70-75.	2.9	28
84	Evaluation of Thin Film Microextraction for trace elemental analysis of liquid samples using LIBS detection. Talanta, 2021, 223, 121736.	5.5	28
85	Experimental investigation of surface deformations at the nematic-isotropic interface : a new method to measure the Nehring-Saupe elastic constant K13. Journal De Physique, 1985, 46, 415-424.	1.8	28
86	Laser-based continuous monitoring and resolution of steel grades in sequence casting machines. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2015, 112, 1-5.	2.9	27
87	Dynamics of laserâ€driven shock waves in water. Journal of Applied Physics, 1989, 66, 5194-5197.	2.5	26
88	Three-dimensional compositional mapping using double-pulse micro-laser-induced breakdown spectroscopy technique. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 127, 1-6.	2.9	26
89	Laser-induced breakdown spectroscopy: principles of the technique and future trends. ChemTexts, 2020, 6, 1.	1.9	25
90	Real time measurement of the electron density of a laser generated plasma using a RC circuit. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2007, 62, 836-840.	2.9	23

#	Article	IF	CITATIONS
91	Identification of inorganic dyeing mordant in textiles by surface-enhanced laser-induced breakdown spectroscopy. Microchemical Journal, 2018, 139, 230-235.	4.5	23
92	Elemental and mineralogical imaging of a weathered limestone rock by double-pulse micro-Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 143, 91-97.	2.9	23
93	Mineralogical, petrographic and physical-mechanical study of Roman construction materials from the Maritime Theatre of Hadrian's Villa (Rome, Italy). Measurement: Journal of the International Measurement Confederation, 2018, 127, 264-276.	5.0	23
94	A new torsion pendulum technique to measure the twist elastic constant of liquid crystals. Journal De Physique (Paris), Lettres, 1985, 46, 881-886.	2.8	23
95	Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography. Optics Communications, 1989, 71, 76-80.	2.1	22
96	Exploiting Self-Absorption for Plasma Characterization in Laser-Induced Breakdown Spectroscopy Experiments: A Comparison of Two Recent Approaches. Analytical Chemistry, 2019, 91, 8595-8601.	6.5	22
97	A fast method for the calculation of electron number density and temperature in laser-induced breakdown spectroscopy plasmas using artificial neural networks. Applied Physics B: Lasers and Optics, 2014, 117, 437-444.	2.2	21
98	Application of Graph Theory to unsupervised classification of materials by Laser-Induced Breakdown Spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2016, 118, 40-44.	2.9	21
99	Laser-Induced Breakdown Spectroscopy for Determination of Spectral Fundamental Parameters. Applied Sciences (Switzerland), 2020, 10, 4973.	2.5	21
100	The Twist Elastic Constant and Anchoring Energy of the Nematic Liquid Crystal 4-N-Octyl-4-Cyanobiphenyl. Liquid Crystals, 1987, 2, 261-268.	2.2	20
101	Calibration Free Laser Induced Plasma Spectroscopy: A New Method for Combustion Products Analysis. Clean Air, 2002, 3, 69-79.	0.0	20
102	Multiplicative stochastic processes: On the correlation time as a function of noise intensity. Physics Letters, Section A: General, Atomic and Solid State Physics, 1983, 99, 25-28.	2.1	19
103	Numerical solution of the Fokker-Planck equation. II. Multidimensional case. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 163, 381-391.	2.1	19
104	The constituents of the ink from a Qumran inkwell: new prospects for provenancing the ink on the Dead Sea Scrolls. Journal of Archaeological Science, 2012, 39, 2956-2968.	2.4	19
105	Spectroscopic analysis of bones for forensic studies. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2014, 99, 70-75.	2.9	19
106	Derivation of the critical angle for Mach reflection for strong shock waves. Physical Review A, 1992, 45, 6130-6132.	2.5	18
107	Laser-induced breakdown spectroscopy: an introduction to the feature issue. Applied Optics, 2003, 42, 5937.	2.1	18
108	Reconstruction of laser-induced plasma spectral emissivity in non-axisymmetric conditions. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 888-896.	2.9	18

#	Article	IF	CITATIONS
109	A multidisciplinary approach for the study and the virtual reconstruction of the ancient polychromy of Roman sarcophagi. Journal of Cultural Heritage, 2015, 16, 307-314.	3.3	18
110	Construction and comparison of 3D multi-source multi-band models for cultural heritage applications. Journal of Cultural Heritage, 2018, 34, 261-267.	3.3	18
111	Quantitative analysis of Ge/Si alloys using double-pulse calibration-free laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 146, 101-105.	2.9	17
112	Discovering "The Italian Flag―by Fernando Melani (1907–1985). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 168, 52-59.	3.9	16
113	Analysis of Serra d'Alto figuline pottery (Matera, Italy): Characterization of the dark decorations using XRF. Microchemical Journal, 2018, 137, 174-180.	4.5	16
114	A multi-analytical characterization of artists' carbon-based black pigments. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3287-3299.	3.6	16
115	Spatial and Temporal Distribution of Chemically Characterized Microplastics within the Protected Area of Pelagos Sanctuary (NW Mediterranean Sea): Focus on Natural and Urban Beaches. Water (Switzerland), 2020, 12, 3389.	2.7	16
116	A new approach to non-linear multivariate calibration in laser-induced breakdown spectroscopy analysis of silicate rocks. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 166, 105804.	2.9	16
117	Mean first-passage time in a bistable system driven by strongly correlated noise: Introduction of a fluctuating potential. Physical Review A, 1989, 39, 3751-3753.	2.5	15
118	Kramers problem for overdamped systems driven by correlated noise: Results for vanishing diffusion coefficients. Physical Review A, 1990, 42, 5946-5954.	2.5	15
119	Measurement of the Stark Broadening of Atomic Emission Lines in Non–Optically Thin Plasmas by Laserâ€Induced Breakdown Spectroscopy. Spectroscopy Letters, 2007, 40, 643-658.	1.0	15
120	Enhancement of hidden patterns in paintings using statistical analysis. Journal of Cultural Heritage, 2013, 14, S66-S70.	3.3	15
121	Laser-Induced Breakdown Spectroscopy analysis of the limestone Nuragic statues from Mont'e Prama site (Sardinia, Italy). Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 149, 62-70.	2.9	15
122	Study of the feeding effect on recent and ancient bovine bones by nanoparticle-enhanced laser-induced breakdown spectroscopy and chemometrics. Journal of Advanced Research, 2019, 17, 65-72.	9.5	15
123	Stratigraphic analysis of historical wooden samples from ancient bowed string instruments by laser induced breakdown spectroscopy. Journal of Cultural Heritage, 2020, 44, 275-284.	3.3	15
124	60 years of street art: A comparative study of the artists' materials through spectroscopic and mass spectrometric approaches. Journal of Cultural Heritage, 2021, 48, 129-140.	3.3	15
125	Applications of LIBS to the Analysis of Metals. Springer Series in Optical Sciences, 2014, , 169-193.	0.7	15
126	Measurements of surface elastic torques in liquid crystals : a method to measure elastic constants and anchoring energies. Revue De Physique Appliquée, 1986, 21, 451-461.	0.4	14

#	Article	IF	CITATIONS
127	On the mean first passage time in a bistable system: Some recently computed data. Physics Letters, Section A: General, Atomic and Solid State Physics, 1988, 129, 317-320.	2.1	14
128	Beyond the linear approximations of the conventional approaches to the theory of chemical relaxation. Journal of Chemical Physics, 1990, 92, 3427-3441.	3.0	14
129	Crater drilling enhancement obtained in parallel non-collinear double-pulse laser ablation. Applied Physics A: Materials Science and Processing, 2010, 98, 219-225.	2.3	14
130	Laser-induced breakdown spectroscopy application to control of the process of precious metal recovery and recycling. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 71-72, 123-126.	2.9	14
131	Multi-technique study of a ceramic archaeological artifact and its content. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 100, 144-148.	3.9	13
132	Improvement of the performances of a commercial hand-held laser-induced breakdown spectroscopy instrument for steel analysis using multiple artificial neural networks. Review of Scientific Instruments, 2020, 91, 073111.	1.3	13
133	Comment on â€~â€~Numerical method for colored-noise generation and its application to a bistable system''. Physical Review A, 1992, 46, 8028-8030.	2.5	12
134	X-Ray Fluorescence Analysis of XII–XIV Century Italian Gold Coins. Journal of Archaeology, 2014, 2014, 1-6.	0.5	12
135	Multielemental analysis of Antarctic soils using calibration free laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 180, 106191.	2.9	12
136	A reflectometric method to measure the azimuthal anchoring energy of a nematic liquid crystal. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1988, 10, 1313-1324.	0.4	11
137	First passage times distribution dependence on noise statistics and colour in a simple dynamical system. Physics Letters, Section A: General, Atomic and Solid State Physics, 1988, 128, 318-326.	2.1	11
138	The Calculation of the Optical Depths of Homogeneous Plasmas: Analytical, Experimental, and Numerical Considerations. Applied Spectroscopy, 2011, 65, 1213-1217.	2.2	11
139	High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy. Journal of Instrumentation, 2016, 11, C08002-C08002.	1.2	11
140	Recovery of a lost wall painting at the Etruscan Tomb of the Blue Demons in Tarquinia (Viterbo, Italy) by multispectral reflectometry and UV fluorescence imaging. Archaeometry, 2019, 61, 450-458.	1.3	11
141	Laser-Induced Breakdown Spectroscopy elemental mapping of the construction material from the Smederevo Fortress (Republic of Serbia). Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 181, 106219.	2.9	11
142	Screening effect of impurities in metals: a possible explanation of the process of cold nuclear fusion. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1989, 11, 927-932.	0.4	10
143	Towards a calibration-less ICP-AES method for the determination of trace elements in aqueous solutions: Double ratio plasma diagnostics combined with an internal standard. Journal of Analytical Atomic Spectrometry, 2009, 24, 655.	3.0	10
144	Hydrogen Balmer α line behavior in Laser-Induced Breakdown Spectroscopy depth scans of Au, Cu, Mn, Pb targets in air. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2010, 65, 557-564.	2.9	10

#	Article	IF	CITATIONS
145	Xâ€ray fluorescence analysis on a group of coins from the ancient roman city of <i>Tridentum</i> (Trento, Italy). X-Ray Spectrometry, 2014, 43, 370-374.	1.4	10
146	A multidisciplinary approach to the investigation of "La Caverna dell'Antimateria―(1958–1959) by Pine Gallizio. Heritage Science, 2014, 2, .	ot 2.3	10
147	Walking in the Streets of Pisa to Discover the Stones Used in the Middle Ages. Geoheritage, 2019, 11, 1631-1641.	2.8	10
148	The projection operator approach to the Fokker-Planck equation. II. Dichotomic and nonlinear Gaussian noise. Journal of Statistical Physics, 1988, 52, 979-1003.	1.2	9
149	The spherical pinch: Generalized scaling laws and experimental verification of the stability of imploding shock waves in spherical geometry. Laser and Particle Beams, 1990, 8, 253-263.	1.0	9
150	Mach reflection phenomenon in the interaction of spherical shock waves in air. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 156, 89-95.	2.1	9
151	Spectroscopic Techniques Applied to the Study of Italian Painted Neolithic Potteries. Laser Chemistry, 2006, 2006, 1-7.	0.5	9
152	Determination of electron temperature temporal evolution in laser-induced plasmas through Independent Component Analysis and 3D Boltzmann plot. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2017, 135, 48-53.	2.9	9
153	Multi-technique characterization of madder lakes: A comparison between non- and micro-destructive methods. Journal of Cultural Heritage, 2018, 33, 208-212.	3.3	9
154	Elemental analysis of dental amalgams by laser-induced breakdown spectroscopy technique. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 149, 229-235.	2.9	9
155	Determination of the Stark broadening coefficients of tantalum emission lines by time-independent Extended C-sigma method. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 167, 105829.	2.9	9
156	Investigating double pulse nanoparticle enhanced laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 167, 105845.	2.9	9
157	Multi-diagnostic approach to characterize the onset of formation of nanoparticles in a premixed laminar ethylene/air flame. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2008, 63, 191-201.	2.9	8
158	X-Ray Fluorescence Analysis and Self-Organizing Maps Classification of the Etruscan Gold Coin Collection at the Monetiere of Florence. Applied Spectroscopy, 2017, 71, 817-822.	2.2	8
159	Measurement of atomic transition probabilities with laser-induced breakdown spectroscopy using the 3D Boltzmann plot method. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2019, 154, 91-96.	2.9	8
160	Quantitative analysis of major components of mineral particulate matter by calibration free laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 171, 105918.	2.9	8
161	Graph clustering and portable X-Ray Fluorescence: An application for in situ, fast and preliminary classification of transport amphoras. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 172, 105966.	2.9	8
162	Laserâ€induced breakdown spectroscopy and chemometric analysis of black toners for forensic applications. Journal of Chemometrics, 2021, 35, e3334.	1.3	8

#	Article	IF	CITATIONS
163	Graphene thin film microextraction and nanoparticle enhancement for fast LIBS metal trace analysis in liquids. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 194, 106471.	2.9	8
164	Interaction of imploding shock waves with expanding central plasma in spherical pinch experiments: Simulation analysis. Journal of Fusion Energy, 1990, 9, 513-516.	1.2	7
165	Hydrodynamic evolution of laser driven diverging shock waves. Laser and Particle Beams, 1990, 8, 247-252.	1.0	7
166	μ-LIBS/μ-Raman spectroscopic analysis of pigments in a Roman fresco. , 2001, , .		7
167	Comment on "three-dimensional analysis of laser induced plasmas in single and double pulse configuration― Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 870-872.	2.9	7
168	Authors' reply to Wen et al.'s comment. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2005, 60, 872-875.	2.9	7
169	History and fundamentals of LIBS. , 0, , 1-39.		7
170	The chemical-physical knowledge before the restoration: the case of "The Plague in Luccaâ€; a masterpiece of Lorenzo Viani (1882–1936). Heritage Science, 2015, 3, .	2.3	7
171	Direct analysis of anthraquinone dyed textiles by Surface Enhanced Raman Spectroscopy and Ag nanoparticles obtained by pulsed laser ablation. European Physical Journal Plus, 2019, 134, 1.	2.6	7
172	Comparison of Convolutional and Conventional Artificial Neural Networks for Laser-Induced Breakdown Spectroscopy Quantitative Analysis. Applied Spectroscopy, 2022, 76, 959-966.	2.2	7
173	Mean first-passage time for random-walk span: Comparison between theory and numerical experiment. Physical Review A, 1989, 40, 4685-4689.	2.5	6
174	Threshold effects in the transport of energy from a hot to a cold oscillator: Theory with analog and digital simulation. Physical Review A, 1989, 39, 2097-2111.	2.5	6
175	Propagation of electromagnetic waves in inhomogeneous plasmas. Journal of Plasma Physics, 1994, 52, 443-456.	2.1	6
176	Detection of pollutants in liquids by laser induced breakdown spectroscopy technique. , 0, , .		6
177	A Procedure for Estimating the Electron Temperatureand the Departure of the LTE Condition in a Time-Dependent, Spatially Homogeneous, Optically Thin Plasma. Brazilian Journal of Physics, 2013, 43, 239-246.	1.4	6
178	Double-pulse laser-induced breakdown spectroscopy analysis of scales from petroleum pipelines. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2013, 87, 188-191.	2.9	6
179	Electroless deposited silver dendrites for SERS identification of natural dyes on laboratory-dyed and historic textiles. European Physical Journal Plus, 2018, 133, 1.	2.6	6
180	An Extended Kalman Filter approach to non-linear multivariate analysis of Laser-Induced Breakdown Spectroscopy spectra. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 149, 271-275.	2.9	6

#	Article	IF	CITATIONS
181	Double and Multiple Pulse LIBS Techniques. Springer Series in Optical Sciences, 2014, , 117-141.	0.7	6
182	Increasing resolution in chemical mapping of geomaterials: From X-ray fluorescence to laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 194, 106482.	2.9	6
183	Temporal analysis of self-reversed Ag I resonant lines in LIBS experiment at different laser pulse energy and in different surrounding media. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2022, 195, 106489.	2.9	6
184	Hydrodynamics of laserâ€produced shock waves in water: Reflection and transmission measurements. Journal of Applied Physics, 1991, 69, 1660-1665.	2.5	5
185	Fast detection in the near and medium infrared by means of transverse dember effect in anisotropic PbS and PbSe films. Infrared Physics, 1993, 34, 137-141.	0.5	5
186	Determining the composition of bronze alloys by means of high-dimensional feature selection and Artificial Neural Networks. , 2015, , .		5
187	Provenance of marbles used for building the internal spiral staircase of the bell tower of St. Nicholas Church (Pisa, Italy). Applied Physics A: Materials Science and Processing, 2017, 123, 1.	2.3	5
188	Analysis of the middle Neolithic trichrome pottery: Characterization of the decoration using X-Ray fluorescence and Raman spectroscopy. Journal of Archaeological Science: Reports, 2019, 24, 192-197.	0.5	5
189	Application of Reflectance Transformation Imaging to Experimental Archaeology Studies. Heritage, 2020, 3, 1279-1286.	1.9	5
190	About the use of inverse calibration in laser-induced breakdown spectroscopy quantitative analysis. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 170, 105917.	2.9	5
191	Effect of plasma inhomogeneity on the determination of Strark broadening coefficients by Laser-Induced Breakdown Spectroscopy. Journal of Quantitative Spectroscopy and Radiative Transfer, 2021, 271, 107714.	2.3	5
192	Rapid stoichiometric analysis of calcium‑phosphorus ratio on hydroxyapatite targets by one-point calibration laser-induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2021, 184, 106250.	2.9	5
193	Combining Multiple Neural Networks to Predict Bronze Alloy Elemental Composition. Smart Innovation, Systems and Technologies, 2016, , 345-352.	0.6	5
194	LIBS analysis of twelve bronze statues displayed in the National Archaeological Museum of Crotone. Optica Pura Y Aplicada, 2012, 45, 277-286.	0.1	5
195	Detection of environmental contaminants by time resolved laser induced breakdown spectroscopy technique. , 0, , .		4
196	Accurate measurement of magnesium content in alpha-olefins by laser induced breakdown spectroscopy (LIBS) technique. Optoelectronics Letters, 2007, 3, 222-226.	0.8	4
197	Comments on the paper: "Accurate quantitative analysis of gold alloys using multi-pulse laser-induced breakdown spectroscopy and a correlation-based calibration method― Spectrochimica Acta, Part B: Atomic Spectroscopy, 2009, 64, 357-358.	2.9	4
198	Comment on "A multivariate model based on dominant factor for laser-induced breakdown spectroscopy measurements―by Zhe Wang, Jie Feng, Lizhi Li, Weidou Ni and Zheng Li, J. Anal. At. Spectrom., 2011, DOI: 10.1039/c1ja10041f. Journal of Analytical Atomic Spectrometry, 2011, 26, 2300.	3.0	4

#	Article	IF	CITATIONS
199	Real time determination of the laser ablated mass by means of electric field-perturbation measurement. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2018, 142, 50-54.	2.9	4
200	A New Infrared True-Color Approach for Visible-Infrared Multispectral Image Analysis. Journal on Computing and Cultural Heritage, 2019, 12, 1-11.	2.1	4
201	Determination of Spectroscopic Parameters of Ag(I) and Ag(II) Emission Lines Using Time-Independent Extended C-Sigma Method. Applied Spectroscopy, 2021, 75, 654-660.	2.2	4
202	A Multi-Analytical Study of an Ancient Egyptian Limestone Stele for Knowledge and Conservation Purposes: Recovering Hieroglyphs and Figurative Details by Image Analysis. Heritage, 2021, 4, 1193-1207.	1.9	4
203	Mean first passage time for bound non-Markovian stochastic processes with superimposed shot noise. Physics Letters, Section A: General, Atomic and Solid State Physics, 1989, 138, 381-386.	2.1	3
204	Simulation and experimental studies on the evolution of a laser spark in air. Laser and Particle Beams, 1992, 10, 707-713.	1.0	3
205	Calibration-free laser-induced plasma spectroscopy: a new frontier for material analysis, environmental protection, and cultural heritage conservation. , 2000, , .		3
206	Modi: a new mobile instrument for in situ standardless LIBS analysis of cultural heritage. , 2005, , .		3
207	From sample to signal in laser-induced breakdown spectroscopy: a complex route to quantitative analysis. , 0, , 122-170.		3
208	Study of binary lead‑tin alloys using a new procedure based on calibration-free laser induced breakdown spectroscopy. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2020, 170, 105902.	2.9	3
209	Understanding the source of signal fuctuations in laser-induced breakdown spectroscopy analytical applications. Frontiers of Physics, 2021, 16, 1.	5.0	3
210	Investigation of the dynamics of converging shock waves in spherical and annular configurations. Journal Physics D: Applied Physics, 1989, 22, 1451-1455.	2.8	2
211	Theoretical and Experimental Studies on the Cold Nuclear Fusion Phenomena. Fusion Science and Technology, 1990, 17, 704-709.	0.6	2
212	On the process of Mach wave generation in air. Laser and Particle Beams, 1991, 9, 453-464.	1.0	2
213	Scaling laws for spherical pinch experiments. Laser and Particle Beams, 1991, 9, 435-442.	1.0	2
214	Theoretical study of electromagnetic waves propagation in random layered media. Physics Letters, Section A: General, Atomic and Solid State Physics, 1993, 172, 256-262.	2.1	2
215	<title>Quantitative LIBS analysis of samples from a Le Sueur bronze</title> . , 2006, , .		2
216	Dynamics of Spatially and Temporally Resolved Laser Induced Al-plasma. AIP Conference Proceedings, 2007, , .	0.4	2

#	Article	IF	CITATIONS
217	Resolving surface details with reflection and fluorescence video-confocal profilometry. Micron, 2007, 38, 104-108.	2.2	2
218	Self-calibrated methods for LIBS quantitative analysis. , 2020, , 561-580.		2
219	Branching Ratio Method for Assessing Optically Thin Conditions in Laser-Induced Plasmas. Applied Spectroscopy, 2021, 75, 000370282110067.	2.2	2
220	Application of Graph Theory to the elaboration of personal genomic data for genealogical research. PeerJ Computer Science, 0, 1, e27.	4.5	2
221	The Cultural Heritage of "Black Stones―(Lapis Aequipondus/Martyrum) of Leopardi's Child Home (Recanati, Italy). Materials, 2022, 15, 3828.	2.9	2
222	Hydrodynamic Effects on Thermalisation of Dense Core with Surrounding Corona in Laserâ€Imploded Zâ€Layered Plasma Target. Contributions To Plasma Physics, 1991, 31, 423-427.	1.1	1
223	Scaling laws considering thermal radiation influence for spherical pinch experiments. Journal of Fusion Energy, 1994, 13, 39-44.	1.2	1
224	Analysis of biological tissues by laser induced breakdown spectroscopy technique. , 2003, , .		1
225	Cultural heritage applications of LIBS. , 0, , 332-367.		1
226	Industrial applications of LIBS. , 0, , 400-439.		1
227	<title>New perspectives in LIBS analysis of polluted soils</title> . , 2006, 6284, 40.		1
228	<title>On the enhancement of laser induced breakdown spectroscopy signal in double pulse configuration</title> . , 2006, , .		1
229	Element detection relying on information retrieval techniques applied to laser spectroscopy. , 2011, , .		1
230	A stochastic model of the process of sequence casting of steel, taking into account imperfect mixing. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	1
231	Comment on: "Measurement of deviations of transition probability of the neutral silver lines at 827.35 and 768.77 nm using OES-technique―by Alhijry etÂal. [JQSRT (2020) 106922]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 256, 107290.	2.3	1
232	Fast and Precise Determination of Painted Artwork Composition by Laser Induced Plasma Spectroscopy. , 2000, , 139-142.		1
233	Digital image analysis on cathodoluminescence microscopy images for ancient ceramic classification: methods, applications, and perspectives. European Physical Journal Plus, 2022, 137, .	2.6	1
234	Flux conduction effect on laser-induced density profile and plasma ablation near plasma resonance layer. Plasma Physics and Controlled Fusion, 1988, 30, 399-406.	2.1	0

#	Article	IF	CITATIONS
235	Hydrodynamics of supercritical region in laser ablated plasmas. Laser and Particle Beams, 1989, 7, 589-595.	1.0	0
236	Tsironiset al. reply. Physical Review Letters, 1989, 63, 217-217.	7.8	0
237	A plasma model of the process of cold nuclear fusion in metals. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 148, 345-350.	2.1	0
238	Thermal effects of hot electron halo in a laser-imploded Z-layered plasma pellet. Laser and Particle Beams, 1990, 8, 421-426.	1.0	0
239	Non-integer moments of the first passage time distribution in non-Markov systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 1991, 159, 133-138.	2.1	0
240	<title>Laser-induced breakdown spectroscopy: a new and powerful technique for pollutant diagnostics</title> . , 1996, 2772, 286.		0
241	An analytic model of coupling of intense ion beams with spherical plasma target. Laser and Particle Beams, 2000, 18, 21-24.	1.0	0
242	LIBS analysis of lichens as bioindicators of environmental pollution. , 2002, , ThE13.		0
243	New spectral detectors for LIBS. , 0, , 556-584.		0
244	Civilian and military environmental contamination studies using LIBS. , 0, , 368-399.		0
245	Fast Quantitative Analysis Of Museum Objects Using Laser-Induced Breakdown Spectroscopy And Multiple Regression Algorithms. , 2009, , .		0
246	Reply to Ira Rabin's Comment on our paper Rasmussen etÂal. (2012). Journal of Archaeological Science, 2014, 43, 155-158.	2.4	0
247	Multispectral imaging to reveal ancient hieroglyphic text in an Egyptian Stele. , 2020, , .		0
248	The Source Materials for Lime Production in the Monte Pisano Area (NW Tuscany, Italy). IOP Conference Series: Earth and Environmental Science, 0, 609, 012078.	0.3	0
249	Comment on: "Slope ratio calibration for analysis of plant leaves by laser-induced breakdown spectroscopy―by Lidiane C. Nunes, Fabio R. P. Rocha and Francisco J. Krug, <i>JAAS</i> , 2019, 34 , 2314 Journal of Analytical Atomic Spectrometry, 2020, 35, 1482-1483	3.0	0