Wenjing Yuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5447412/publications.pdf

Version: 2024-02-01

172457 233421 6,829 45 29 45 citations h-index g-index papers 45 45 45 11482 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chemical Communications, 2011, 47, 6858.	4.1	1,458
2	Graphene-based gas sensors. Journal of Materials Chemistry A, 2013, 1, 10078.	10.3	938
3	Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Scientific Reports, 2012, 2, 247.	3.3	559
4	The edge- and basal-plane-specific electrochemistry of a single-layer graphene sheet. Scientific Reports, 2013, 3, 2248.	3.3	432
5	Highâ€Performance NO ₂ Sensors Based on Chemically Modified Graphene. Advanced Materials, 2013, 25, 766-771.	21.0	404
6	A high-performance three-dimensional Ni–Fe layered double hydroxide/graphene electrode for water oxidation. Journal of Materials Chemistry A, 2015, 3, 6921-6928.	10.3	291
7	A flexible VOCs sensor based on a 3D Mxene framework with a high sensing performance. Journal of Materials Chemistry A, 2018, 6, 18116-18124.	10.3	286
8	A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chemical Communications, 2013, 49, 291-293.	4.1	272
9	Graphene Oxide Membranes with Tunable Semipermeability in Organic Solvents. Advanced Materials, 2015, 27, 3797-3802.	21.0	192
10	Nanoporous graphene materials. Materials Today, 2014, 17, 77-85.	14.2	170
10	Nanoporous graphene materials. Materials Today, 2014, 17, 77-85. Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780.	14.2 5.6	160
	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide		
11	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer	5.6	160
11 12	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Applied Materials & Dioxide Sensor Based on a network-structured. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale, 2019, 11,	5.6 8.0	160 153
11 12 13	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Applied Materials & Dioxide Sensor Based on a network-structured. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale, 2019, 11, 9949-9957. Performance enhancement of a graphene–sulfur composite as a lithium–sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. Journal of Materials Chemistry A,	5.6 8.0 5.6	160 153 150
11 12 13	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17003-17008. A highly flexible and multifunctional strain sensor based on a network-structured MXene/polyurethane mat with ultra-high sensitivity and a broad sensing range. Nanoscale, 2019, 11, 9949-9957. Performance enhancement of a graphene–sulfur composite as a lithium–sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. Journal of Materials Chemistry A, 2014, 2, 7360. Wearable Pressure Sensors Based on MXene/Tissue Papers for Wireless Human Health Monitoring. ACS	5.6 8.0 5.6	160 153 150 135
11 12 13 14	Strong composite films with layered structures prepared by casting silk fibroin–graphene oxide hydrogels. Nanoscale, 2013, 5, 3780. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Applied Materials & Diversity and a production of the polymer Composite Nanofibers. ACS Applied Materials & Diversity and a broad sensing range. Nanoscale, 2019, 11, 9949-9957. Performance enhancement of a graphene–sulfur composite as a lithium–sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. Journal of Materials Chemistry A, 2014, 2, 7360. Wearable Pressure Sensors Based on MXene/Tissue Papers for Wireless Human Health Monitoring. ACS Applied Materials & Diversity A, 2014, 2, 7360. Solution-Processed PEDOT:PSS/Graphene Composites as the Electrocatalyst for Oxygen Reduction	5.6 8.0 5.6 10.3	160 153 150 135

#	Article	IF	CITATIONS
19	Flexible and highly sensitive artificial electronic skin based on graphene/polyamide interlocking fabric. Journal of Materials Chemistry C, 2018, 6, 6840-6846.	5.5	64
20	Small and light strain sensors based on graphene coated human hairs. Nanoscale, 2015, 7, 16361-16365.	5.6	61
21	Flexible MoSe2/MXene films for Li/Na-ion hybrid capacitors. Journal of Power Sources, 2021, 488, 229452.	7.8	59
22	Triazine-Based Two-Dimensional Organic Polymer for Selective NO ₂ Sensing with Excellent Performance. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3919-3927.	8.0	48
23	A highly sensitive, multifunctional, and wearable mechanical sensor based on RGO/synergetic fiber bundles for monitoring human actions and physiological signals. Sensors and Actuators B: Chemical, 2019, 285, 179-185.	7.8	42
24	Efficient NH ₃ Detection Based on MOS Sensors Coupled with Catalytic Conversion. ACS Sensors, 2020, 5, 1838-1848.	7.8	42
25	High-Performance and Multifunctional Skinlike Strain Sensors Based on Graphene/Springlike Mesh Network. ACS Applied Materials & Samp; Interfaces, 2018, 10, 19906-19913.	8.0	40
26	Power-law response of metal oxide semiconductor gas sensors to oxygen in presence of reducing gases. Sensors and Actuators B: Chemical, 2018, 267, 510-518.	7.8	39
27	Highly sensitive and selective room-temperature nitrogen dioxide sensors based on porous graphene. Sensors and Actuators B: Chemical, 2018, 275, 78-85.	7.8	39
28	Selective detection of methane by HZSM-5 zeolite/Pd-SnO2 gas sensors. Sensors and Actuators B: Chemical, 2020, 321, 128567.	7.8	36
29	Highly Sensitive, Selective, and Flexible NO ₂ Chemiresistors Based on Multilevel Structured Three-Dimensional Reduced Graphene Oxide Fiber Scaffold Modified with Aminoanthroquinone Moieties and Ag Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 9309-9316.	8.0	34
30	Stretchable and wearable conductometric VOC sensors based on microstructured MXene/polyurethane core-sheath fibers. Sensors and Actuators B: Chemical, 2021, 346, 130500.	7.8	34
31	MXene-Derived TiO ₂ Nanoparticles Intercalating between RGO Nanosheets: An Assembly for Highly Sensitive Gas Detection. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39772-39780.	8.0	32
32	Conductive MXene/melamine sponge combined with 3D printing resin base prepared as an electromagnetic interferences shielding switch. Composites Part A: Applied Science and Manufacturing, 2021, 143, 106238.	7.6	28
33	Microstructured MXene/polyurethane fibrous membrane for highly sensitive strain sensing with ultra-wide and tunable sensing range. Composites Communications, 2021, 23, 100586.	6.3	27
34	Selective detection of methane by Pd-In2O3 sensors with a catalyst filter film. Sensors and Actuators B: Chemical, 2021, 328, 129030.	7.8	25
35	Highly stretchable pressure sensors with wrinkled fibrous geometry for selective pressure sensing with minimal lateral strain-induced interference. Composites Part B: Engineering, 2021, 217, 108899.	12.0	24
36	Electrochemical actuator based on polypyrrole/sulfonated graphene/graphene tri-layer film. Thin Solid Films, 2012, 520, 6307-6312.	1.8	23

#	Article	IF	CITATIONS
37	Picomolar detection of mercury (II) using a three-dimensional porous graphene/polypyrrole composite electrode. Analytical and Bioanalytical Chemistry, 2014, 406, 6953-6956.	3.7	23
38	Hydrogen sensing mechanism of Ru-loaded WO3 nanosheets. Sensors and Actuators B: Chemical, 2020, 304, 127339.	7.8	23
39	A new sensing material design based on chemically passivated phosphorene/porous two-dimensional polymer: Highly sensitive and selective detection of NO2. Sensors and Actuators B: Chemical, 2021, 329, 129233.	7.8	22
40	Stretchable, conductive and porous MXene-based multilevel structured fibers for sensitive strain sensing and gas sensing. Journal of Materials Chemistry A, 2022, 10, 15634-15646.	10.3	19
41	End Group Modification for Black Phosphorus: Simultaneous Improvement of Chemical Stability and Gas Sensing Performance. ACS Applied Materials & Samp; Interfaces, 2021, 13, 50270-50280.	8.0	16
42	Bioinspired Pretextured Reduced Graphene Oxide Patterns with Multiscale Topographies for High-Performance Mechanosensors. ACS Applied Materials & Interfaces, 2019, 11, 18645-18653.	8.0	15
43	Gas sensing investigation on anthraquinone nanowire decorated phosphorene: Enhanced stability in conjunction with superior sensitivity. Chemical Engineering Journal, 2020, 394, 124933.	12.7	14
44	Controllable configuration of conductive pathway by tailoring the fiber alignment for ultrasensitive strain monitoring. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106223.	7.6	8
45	Investigation on acetone sensing properties and mechanism of p-type Cr2WO6 nanoparticles. Journal of Materials Science: Materials in Electronics, 2020, 31, 3899-3909.	2.2	5