Todd C Hufnagel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5446103/publications.pdf Version: 2024-02-01

TODD C HUENACEL

#	Article	IF	CITATIONS
1	Magnesium alloy design: Examples from the Materials in Extreme Dynamic Environments Metals Collaborative Research Group. Mechanics of Materials, 2022, 165, 104136.	3.2	4
2	Special issue of mechanics of materials: Mechanics of magnesium alloys in dynamic environments. Mechanics of Materials, 2022, 168, 104264.	3.2	2
3	Insights from the MEDE program: An overview of microstructure–property linkages in the dynamic behaviors of magnesium alloys. Mechanics of Materials, 2021, 163, 104084.	3.2	13
4	Strain-Rate Dependence of the Martensitic Transformation Behavior in a 10 Pct Ni Multi-phase Steel Under Compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 5101-5109.	2.2	7
5	Crack nucleation and growth during dynamic indentation of chemically-strengthened glass. Extreme Mechanics Letters, 2020, 38, 100754.	4.1	6
6	Real-time observation of twinning-detwinning in shock-compressed magnesium via time-resolved <i>in situ</i> synchrotron XRD experiments. Physical Review Materials, 2020, 4, .	2.4	12
7	From critical behavior to catastrophic runaways: comparing sheared granular materials with bulk metallic glasses. Granular Matter, 2019, 21, 1.	2.2	12
8	Validated simulations of dynamic crack propagation in single crystals using EFEM and XFEM. International Journal of Fracture, 2019, 215, 49-65.	2.2	4
9	Viewing internal bubbling and microexplosions in combusting metal particles via x-ray phase contrast imaging. Combustion and Flame, 2019, 199, 194-203.	5.2	39
10	Determination of size distributions of non-spherical pores or particles from single x-ray phase contrast images. Optics Express, 2019, 27, 17322.	3.4	7
11	Mechanisms of oxide growth during the combustion of Al:Zr nanolaminate foils. Combustion and Flame, 2018, 191, 442-452.	5.2	9
12	In Situ Time-Resolved Measurements of Extension Twinning During Dynamic Compression of Polycrystalline Magnesium. Journal of Dynamic Behavior of Materials, 2018, 4, 222-230.	1.7	9
13	Slip statistics for a bulk metallic glass composite reflect its ductility. Journal of Applied Physics, 2018, 124, 185101.	2.5	11
14	Quantitative In Situ Studies of Dynamic Fracture in Brittle Solids Using Dynamic X-ray Phase Contrast Imaging. Experimental Mechanics, 2018, 58, 1423-1437.	2.0	20
15	Universal slip dynamics in metallic glasses and granular matter – linking frictional weakening with inertial effects. Scientific Reports, 2017, 7, 43376.	3.3	41
16	X-ray reflectivity measurement of interdiffusion inÂmetallic multilayers during rapid heating. Journal of Synchrotron Radiation, 2017, 24, 796-801.	2.4	15
17	Experimental evidence for both progressive and simultaneous shear during quasistatic compression of a bulk metallic glass. Journal of Applied Physics, 2016, 119, .	2.5	36
18	Deformation of metallic glasses: Recent developments in theory, simulations, and experiments. Acta Materialia, 2016, 109, 375-393.	7.9	400

#	Article	IF	CITATIONS
19	Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes. Scientific Reports, 2015, 5, 16493.	3.3	104
20	Cryogenic rejuvenation. Nature Materials, 2015, 14, 867-868.	27.5	63
21	Time-resolved x-ray diffraction techniques for bulk polycrystalline materials under dynamic loading. Review of Scientific Instruments, 2014, 85, 093901.	1.3	28
22	Shear bands in metallic glasses are not necessarily hot. APL Materials, 2014, 2, .	5.1	25
23	Bulk Metallic Glasses Deform via Slip Avalanches. Physical Review Letters, 2014, 112, 155501.	7.8	183
24	Self-propagating reactions in Al/Zr multilayers: Anomalous dependence of reaction velocity on bilayer thickness. Journal of Applied Physics, 2013, 114, .	2.5	24
25	Crack-Tip Strain Field Mapping and the Toughness of Metallic Glasses. PLoS ONE, 2013, 8, e83289.	2.5	19
26	Length-scale dependence of elastic strain from scattering measurements in metallic glasses. Physical Review B, 2012, 85, .	3.2	31
27	Reactive sintering: An important component in the combustion of nanocomposite thermites. Combustion and Flame, 2012, 159, 2-15.	5.2	135
28	Fast X-ray microdiffraction techniques for studying irreversible transformations in materials. Journal of Synchrotron Radiation, 2011, 18, 464-474.	2.4	16
29	Time-resolved x-ray microdiffraction studies of phase transformations during rapidly propagating reactions in Al/Ni and Zr/Ni multilayer foils. Journal of Applied Physics, 2010, 107, .	2.5	92
30	Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass. Acta Materialia, 2009, 57, 4639-4648.	7.9	115
31	Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Materialia, 2008, 56, 5091-5100.	7.9	175
32	Fracture toughness of bulk metallic glass welds made using nanostructured reactive multilayer foils. Scripta Materialia, 2008, 58, 315-318.	5.2	22
33	Selected area nanodiffraction fluctuation electron microscopy for studying structural order in amorphous solids. Scripta Materialia, 2008, 58, 303-306.	5.2	10
34	Phase transformations during rapid heating of Al/Ni multilayer foils. Applied Physics Letters, 2008, 93, .	3.3	103
35	Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55, 4067-4109.	7.9	2,919
36	Bulk and microscale compressive properties of a Pd-based metallic glass. Scripta Materialia, 2007, 57, 517-520.	5.2	96

#	Article	IF	CITATIONS
37	Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology, 2006, 17, 3880-3891.	2.6	179
38	Structural aspects of elastic deformation of a metallic glass. Physical Review B, 2006, 73, .	3.2	139
39	Yield criteria and strain-rate behavior of Zr57.4Cu16.4Ni8.2Ta8Al10 metallic-glass-matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 3251-3258.	2.2	27
40	Preface to the viewpoint set on mechanical behavior of metallic glasses. Scripta Materialia, 2006, 54, 317-319.	5.2	23
41	Quasicrystal formation in Zr-Cu-Ni-Al-Ta metallic glasses and composites. Philosophical Magazine, 2006, 86, 299-307.	1.6	2
42	Micromechanics of deformation of metallic-glass–matrix composites from in situ synchrotron strain measurements and finite element modeling. Acta Materialia, 2005, 53, 1883-1893.	7.9	88
43	Thermal and microstructural effects of welding metallic glasses by self-propagating reactions in multilayer foils. Acta Materialia, 2005, 53, 3713-3719.	7.9	61
44	Strain measurement in metallic glasses and metallic-glass-matrix composites by means of x-ray scattering. Materials Research Society Symposia Proceedings, 2005, 903, 1.	0.1	0
45	Microstructural study of an oscillatory formation reaction in nanostructured reactive multilayer foils. Applied Physics Letters, 2005, 87, 153108.	3.3	47
46	Finding order in disorder. Nature Materials, 2004, 3, 666-667.	27.5	60
47	Deformation and failure of Zr57Nb5Al10Cu15.4Ni12.6/W particle composites under quasi-static and dynamic compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 3439-3444.	2.2	39
48	Structure and Defects on the Nanometer Scale in Metallic Glasses. Microscopy and Microanalysis, 2004, 10, 80-81.	0.4	0
49	Joining bulk metallic glass using reactive multilayer foils. Scripta Materialia, 2003, 48, 1575-1580.	5.2	129
50	Microstructural evolution of platinum modified nickel aluminide bond coat during thermal cycling. Surface and Coatings Technology, 2003, 163-164, 25-30.	4.8	91
51	Structural and magnetic length scales in amorphous TbFe2. Journal of Magnetism and Magnetic Materials, 2003, 256, 322-327.	2.3	6
52	Characterization and modeling of a martensitic transformation in a platinum modified diffusion aluminide bond coat for thermal barrier coatings. Acta Materialia, 2003, 51, 4279-4294.	7.9	125
53	Crystallization and mechanical behavior of (Hf, Zr)–Ti–Cu–Ni–Al metallic glasses. Journal of Non-Crystalline Solids, 2003, 317, 112-117.	3.1	46
54	Structure and properties of Zr–Ta–Cu–Ni–Al bulk metallic glasses and metallic glass matrix composites. Journal of Non-Crystalline Solids, 2003, 317, 158-163.	3.1	31

#	Article	IF	CITATIONS
55	Synchrotron Strain Measurements for in situ Formed Metallic Glass Matrix Composites. Materials Research Society Symposia Proceedings, 2003, 806, 326.	0.1	1
56	Free volume coalescence and void formation in shear bands in metallic glass. Journal of Applied Physics, 2003, 93, 1432-1437.	2.5	193
57	Short- and medium-range order in(Zr70Cu20Ni10)90â^'xTaxAl10bulk amorphous alloys. Physical Review B, 2003, 67, .	3.2	61
58	Metallic glass fluid flow during welding using self-propagating reactive multilayer foils. Materials Research Society Symposia Proceedings, 2003, 806, 7.	0.1	1
59	Using Fluctuation Microscopy to Characterize Structural Order in Metallic Glasses. Microscopy and Microanalysis, 2003, 9, 509-515.	0.4	61
60	Nanometre-scale defects in shear bands in a metallic glass. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 2623-2630.	0.6	187
61	Metallic glass matrix composite with precipitated ductile reinforcement. Applied Physics Letters, 2002, 81, 1020-1022.	3.3	330
62	Deformation and Failure of Zr ₅₇ Ti ₅ Cu ₂₀ Ni ₈ Al ₁₀ Bulk Metallic Glass Under Quasi-static and Dynamic Compression. Journal of Materials Research, 2002, 17, 1441-1445.	2.6	172
63	Effect of Loading Rate on Failure in Bulk Metallic Glasses. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
64	Structure of Shear Bands in Zirconium-Based Metallic Glasses Observed by Transmission Electron Microscopy. Materials Research Society Symposia Proceedings, 2002, 754, 1.	0.1	0
65	Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution transmission electron microscopy. Physical Review B, 2002, 65, .	3.2	158
66	Glass-forming ability and crystallization of bulk metallic glass (HfxZr1â^'x)52.5Cu17.9Ni14.6Al10Ti5. Journal of Non-Crystalline Solids, 2002, 311, 77-82.	3.1	58
67	Controlling shear band behavior in metallic glasses through microstructural design. Intermetallics, 2002, 10, 1163-1166.	3.9	130
68	Nanometre-scale defects in shear bands in a metallic glass. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2002, 82, 2623-2630.	0.6	11
69	Medium-Range Order in Metallic Classes Studied by Fluctuation Microscopy. Microscopy and Microanalysis, 2001, 7, 1260-1261.	0.4	14
70	Enhanced plastic strain in Zr-based bulk amorphous alloys. Physical Review B, 2001, 64, .	3.2	255
71	Plastic Deformation of Bulk Amorphous Alloys. Materials Research Society Symposia Proceedings, 2000, 644, 1171.	0.1	0
72	In-Situ Observations of Shear Band Development during Deformation of a Bulk Metallic Glass. Materials Research Society Symposia Proceedings, 2000, 644, 1021.	0.1	3

#	Article	IF	CITATIONS
73	Development of shear band structure during deformation of a Zr57Ti5Cu20Ni8Al10 bulk metallic glass. Scripta Materialia, 2000, 43, 1071-1075.	5.2	118
74	Relation between short-range order and crystallization behavior in Zr-based amorphous alloys. Applied Physics Letters, 2000, 77, 1970-1972.	3.3	138
75	Preparation and Mechanical Properties of Hafnium-based Bulk Metallic Glasses. Materials Research Society Symposia Proceedings, 2000, 644, 12161.	0.1	0
76	Effect of annealing on Y/Mo multilayers. Journal of Applied Physics, 1999, 86, 2459-2463.	2.5	4
77	Structural evolution during deposition of epitaxial Fe/Pt(001) multilayers. Journal of Applied Physics, 1999, 85, 2609-2616.	2.5	26
78	Short-Range Order and Nanocrystallization in Amorphous Zr-Ti-Cu-Ni-Al. Materials Research Society Symposia Proceedings, 1999, 580, 381.	0.1	3
79	Structural Transformations During Growth of Epitaxial Fe(001) Thin Films on Cu(001) and Pt(001). Materials Research Society Symposia Proceedings, 1996, 436, 9.	0.1	1
80	Structural Transformations Due to Intermixing During Deposition oF Fe/Pt(001) Epitaxial Multilayers. Materials Research Society Symposia Proceedings, 1996, 441, 367.	0.1	0
81	Comment on â€ã€~Amorphous films formed by solidâ€state reaction in an immiscible Y–Mo system and their structural relaxation'' [Appl. Phys. Lett. 68, 3096 (1996)]. Applied Physics Letters, 1996, 69, 2938-2939.	3.3	9
82	Structural anisotropy in amorphous Fe-Tb thin films. Physical Review B, 1996, 53, 12024-12030.	3.2	24
83	Amorphous alloys formed by solid state reaction. Journal of Alloys and Compounds, 1993, 194, 221-227.	5.5	24
84	TEM analysis of Co–Gd and Co–Gd multilayer structures. Journal of Materials Research, 1993, 8, 771-774.	2.6	31
85	Observation of a rapid amorphization reaction. Journal of Materials Research, 1992, 7, 1976-1979.	2.6	22
86	Structural Characterization of Multilayers Using X-ray Diffraction. Materials Research Society Symposia Proceedings, 1991, 239, 475.	0.1	3