
Christoph Schwarzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5445831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Kappa Opioid Receptor System in Temporal Lobe Epilepsy. Handbook of Experimental Pharmacology, 2021, 271, 379-400.	1.8	5
2	A Rationale for Hypoxic and Chemical Conditioning in Huntington's Disease. International Journal of Molecular Sciences, 2021, 22, 582.	4.1	21
3	Biallelic mutations in the death domain of PIDD1 impair caspase-2 activation and are associated with intellectual disability. Translational Psychiatry, 2021, 11, 1.	4.8	334
4	Knockout of CaV1.3 L-type calcium channels in a mouse model of retinitis pigmentosa. Scientific Reports, 2021, 11, 15146.	3.3	2
5	Considerations on Using Antibodies for Studying the Dynorphins/Kappa Opioid Receptor System. Handbook of Experimental Pharmacology, 2021, 271, 23-38.	1.8	3
6	Functional characterization of novel bumetanide derivatives for epilepsy treatment. Neuropharmacology, 2020, 162, 107754.	4.1	23
7	Impaired chloride homeostasis in epilepsy: Molecular basis, impact on treatment, and current treatment approaches. , 2020, 205, 107422.		26
8	Neuroinflammatory alterations in trait anxiety: modulatory effects of minocycline. Translational Psychiatry, 2020, 10, 256.	4.8	39
9	Mitochondrial Respiration Changes in R6/2 Huntington's Disease Model Mice during Aging in a Brain Region Specific Manner. International Journal of Molecular Sciences, 2020, 21, 5412.	4.1	12
10	Role for Chromatin Remodeling Factor Chd1 in Learning and Memory. Frontiers in Molecular Neuroscience, 2019, 12, 3.	2.9	13
11	Dynorphinâ€based "release on demand―gene therapy for drug―esistant temporal lobe epilepsy. EMBO Molecular Medicine, 2019, 11, e9963.	6.9	29
12	Design, Synthesis, and Pharmacological Evaluation of Novel β2/3 Subunit-Selective γ-Aminobutyric Acid Type A (GABA _A) Receptor Modulators. Journal of Medicinal Chemistry, 2019, 62, 317-341.	6.4	9
13	New Features on the Expression and Trafficking of mGluR1 Splice Variants Exposed by Two Novel Mutant Mouse Lines. Frontiers in Molecular Neuroscience, 2018, 11, 439.	2.9	7
14	Protein kinase N1 critically regulates cerebellar development and long-term function. Journal of Clinical Investigation, 2018, 128, 2076-2088.	8.2	11
15	Proenkephalin Derived Peptides Are Involved in the Modulation of Mitochondrial Respiratory Control During Epileptogenesis. Frontiers in Molecular Neuroscience, 2018, 11, 351.	2.9	6
16	In vivo brain GPCR signaling elucidated by phosphoproteomics. Science, 2018, 360, .	12.6	105
17	The Opioid System in Temporal Lobe Epilepsy: Functional Role and Therapeutic Potential. Frontiers in Molecular Neuroscience, 2017, 10, 245.	2.9	31
18	Ablation of Sphingosine 1-Phosphate Receptor Subtype 3 Impairs Hippocampal Neuron Excitability In vitro and Spatial Working Memory In vivo. Frontiers in Cellular Neuroscience, 2016, 10, 258.	3.7	16

#	Article	IF	CITATIONS
19	Analysis of Â-Subunit-dependent GABAA Receptor Modulation and Behavioral Effects of Valerenic Acid Derivatives. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 580-590.	2.5	13
20	Sprouty2 and â€4 hypomorphism promotes neuronal survival and astrocytosis in a mouse model of kainic acid induced neuronal damage. Hippocampus, 2016, 26, 658-667.	1.9	6
21	The Gâ€protein biased partial κ opioid receptor agonist 6′â€GNTI blocks hippocampal paroxysmal discharges without inducing aversion. British Journal of Pharmacology, 2016, 173, 1756-1767.	5.4	26
22	Differential distribution of the sodiumâ€activated potassium channels slick and slack in mouse brain. Journal of Comparative Neurology, 2016, 524, 2093-2116.	1.6	59
23	Metallothioneins and renal ageing. Nephrology Dialysis Transplantation, 2016, 31, 1444-1452.	0.7	14
24	Restricting calcium currents is required for correct fiber type specification in skeletal muscle. Development (Cambridge), 2016, 143, 1547-59.	2.5	39
25	Differences in mitochondrial function in homogenated samples from healthy and epileptic specific brain tissues revealed by high-resolution respirometry. Mitochondrion, 2015, 25, 104-112.	3.4	66
26	Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain. Biochemistry and Biophysics Reports, 2015, 4, 291-298.	1.3	12
27	STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Molecular and Cellular Neurosciences, 2015, 67, 104-115.	2.2	8
28	Reacquisition of cocaine conditioned place preference and its inhibition by previous social interaction preferentially affect D1-medium spiny neurons in the accumbens corridor. Frontiers in Behavioral Neuroscience, 2014, 8, 317.	2.0	20
29	GPER1 (GPR30) knockout mice display reduced anxiety and altered stress response in a sex and paradigm dependent manner. Hormones and Behavior, 2014, 66, 628-636.	2.1	61
30	Possible Role of Dynorphins in Alzheimer's Disease and Age-Related Cognitive Deficits. Neurodegenerative Diseases, 2014, 13, 82-85.	1.4	25
31	Esters of valerenic acid as potential prodrugs. European Journal of Pharmacology, 2014, 735, 123-131.	3.5	11
32	A Cycloartane Glycoside Derived from Actaea racemosa L. Modulates GABAA Receptors and Induces Pronounced Sedation in Mice. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 234-242.	2.5	8
33	Dynorphin Acts as a Neuromodulator to Inhibit Itch in the Dorsal Horn of the Spinal Cord. Neuron, 2014, 82, 573-586.	8.1	290
34	Double deletion of orexigenic neuropeptide Y and dynorphin results in paradoxical obesity in mice. Neuropeptides, 2014, 48, 143-151.	2.2	4
35	Knockdown of Prodynorphin Gene Prevents Cognitive Decline, Reduces Anxiety, and Rescues Loss of Group 1 Metabotropic Glutamate Receptor Function in Aging. Journal of Neuroscience, 2013, 33, 12792-12804.	3.6	26
36	GABAA receptor modulation by piperine and a non-TRPV1 activating derivative. Biochemical Pharmacology, 2013, 85, 1827-1836.	4.4	44

#	Article	IF	CITATIONS
37	Spatioâ€ŧemporal expression of <i>HOX</i> genes in human hindgut development. Developmental Dynamics, 2013, 242, 53-66.	1.8	11
38	Direct association of the reticulon protein RTN1A with the ryanodine receptor 2 in neurons. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1421-1433.	4.1	13
39	Hypothalamic κ-Opioid Receptor Modulates the Orexigenic Effect of Ghrelin. Neuropsychopharmacology, 2013, 38, 1296-1307.	5.4	40
40	Novel Mutation in Potassium Channel related Gene <i>KCTD7</i> and Progressive Myoclonic Epilepsy. Annals of Human Genetics, 2012, 76, 326-331.	0.8	31
41	The endogenous opioid dynorphin is required for normal bone homeostasis in mice. Neuropeptides, 2012, 46, 383-394.	2.2	13
42	Role of tartrate-resistant acid phosphatase (TRAP) in long bone development. Mechanisms of Development, 2012, 129, 162-176.	1.7	52
43	Influence of Sex and Genetic Background on Anxiety-Related and Stress-Induced Behaviour of Prodynorphin-Deficient Mice. PLoS ONE, 2012, 7, e34251.	2.5	32
44	Activation of the G-protein-coupled receptor GPR30 induces anxiogenic effects in mice, similar to oestradiol. Psychopharmacology, 2012, 221, 527-535.	3.1	47
45	Sprouty2 and â€4 regulate axon outgrowth by hippocampal neurons. Hippocampus, 2012, 22, 434-441.	1.9	20
46	Kappa opioid receptor activation blocks progressive neurodegeneration after kainic acid injection. Hippocampus, 2011, 21, 1010-1020.	1.9	20
47	VEGF and its role in the early development of the long bone epiphysis. Journal of Anatomy, 2010, 216, 611-624.	1.5	21
48	Efficient mRNA detection from human archival paraffin-embedded tissue: An update. Rna, 2010, 16, 1446-1446.	3.5	2
49	Breaking the seals: Efficient mRNA detection from human archival paraffin-embedded tissue. Rna, 2009, 15, 1588-1596.	3.5	8
50	Prodynorphin-Derived Peptides Are Critical Modulators of Anxiety and Regulate Neurochemistry and Corticosterone. Neuropsychopharmacology, 2009, 34, 775-785.	5.4	143
51	30Âyears of dynorphins — New insights on their functions in neuropsychiatric diseases. , 2009, 123, 353-370.		241
52	Involvement of dynorphin in anxiogenic effects of estrogen. BMC Pharmacology, 2009, 9, .	0.4	0
53	Lasp1 misexpression influences chondrocyte differentiation in the vertebral column. International Journal of Developmental Biology, 2009, 53, 983-991.	0.6	12
54	Dynorphin Knockout Reduces Fat Mass and Increases Weight Loss during Fasting in Mice. Molecular Endocrinology, 2007, 21, 1722-1735.	3.7	29

CHRISTOPH SCHWARZER

#	Article	IF	CITATIONS
55	Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect via kappa opioid receptors. Brain, 2007, 130, 1017-1028.	7.6	116
56	Epithelial and Muscular Regionalization of the Human Developing Anorectum. Anatomical Record, 2007, 290, 1449-1458.	1.4	37
57	Bone development in the femoral epiphysis of mice: The role of cartilage canals and the fate of resting chondrocytes. Developmental Dynamics, 2007, 236, 2077-2088.	1.8	33
58	Identification and location of bone-forming cells within cartilage canals on their course into the secondary ossification centre. Journal of Anatomy, 2006, 208, 695-707.	1.5	59
59	Distribution of prodynorphin mRNA and its interaction with the NPY system in the mouse brain. Neuropeptides, 2006, 40, 115-123.	2.2	48
60	Y1 receptors regulate aggressive behavior by modulating serotonin pathways. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12742-12747.	7.1	83
61	GABA and Its Receptors in Epilepsy. Advances in Experimental Medicine and Biology, 2004, 548, 92-103.	1.6	139
62	Expression of plasma membrane GABA transporters but not of the vesicular GABA transporter in dentate granule cells after kainic acid seizures. Hippocampus, 2003, 13, 806-815.	1.9	63
63	Synergistic Effects of Y2 and Y4 Receptors on Adiposity and Bone Mass Revealed in Double Knockout Mice. Molecular and Cellular Biology, 2003, 23, 5225-5233.	2.3	109
64	Increased Expression of GABA _A Receptor β-Subunits in the Hippocampus of Patients with Temporal Lobe Epilepsy. Journal of Neuropathology and Experimental Neurology, 2003, 62, 820-834.	1.7	75
65	Important role of hypothalamic Y2 receptors in body weight regulation revealed in conditional knockout mice. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8938-8943.	7.1	229
66	Y2 Receptor Deletion Attenuates the Type 2 Diabetic Syndrome of ob/ob Mice. Diabetes, 2002, 51, 3420-3427.	0.6	100
67	Y4 receptor knockout rescues fertility in <i>ob/ob</i> mice. Genes and Development, 2002, 16, 1077-1088.	5.9	159
68	Regional Differences in Distribution and Functional Expression of Small-Conductance Ca ²⁺ -Activated K ⁺ Channels in Rat Brain. Journal of Neuroscience, 2002, 22, 9698-9707.	3.6	195
69	Changes in the GABA-ergic system induced by trimethyltin application in the rat. Molecular Brain Research, 2001, 97, 1-6.	2.3	31
70	Distribution of the major ?-aminobutyric acidA receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. Journal of Comparative Neurology, 2001, 433, 526-549.	1.6	155
71	Altered hippocampal expression of neuropeptide Y, somatostatin, and glutamate decarboxylase in Ihara's epileptic rats and spontaneously epileptic rats. Neuroscience Letters, 2000, 287, 105-108.	2.1	18
72	Trimethyltin-Induced Expression of Neuropeptide Y Y2 Receptors in Rat Dentate Gyrus. Neurotoxicology and Teratology, 1998, 20, 607-610.	2.4	8

CHRISTOPH SCHWARZER

#	Article	IF	CITATIONS
73	Glutamate-stimulated neuropeptide Y mRNA expression in the rat dentate gyrus: A prominent role of metabotropic glutamate receptors. , 1998, 8, 274-288.		26
74	Physiological and electron microscopical investigations on syntrophic dicyandiamide degradation by soil bacteria. Soil Biology and Biochemistry, 1998, 30, 385-391.	8.8	5
75	Metabotropic glutamate receptors mediate activation of NPY-Y2 receptor expression in the rat dentate gyrus. NeuroReport, 1998, 9, 2347-2351.	1.2	10
76	Up-Regulation of Neuropeptide Y-Y ₂ Receptors in an Animal Model of Temporal Lobe Epilepsy. Molecular Pharmacology, 1998, 53, 6-13.	2.3	117
77	Somatostatin-and Neuropeptide Y-Mediated Neurotransmission in Kindling Epileptogenesis. Advances in Behavioral Biology, 1998, , 313-325.	0.2	2
78	Complex Subunit Assembly of Neuronal Voltage-gated K+Channels. Journal of Biological Chemistry, 1997, 272, 27577-27581.	3.4	108
79	Altered expression of NPY-Y1 receptors in kainic acid induced epilepsy in rats. Neuroscience Letters, 1997, 230, 129-132.	2.1	67
80	Secretoneurin: A marker in rat hippocampal pathways. , 1997, 377, 29-40.		17
81	Secretoneurin: A marker in rat hippocampal pathways. Journal of Comparative Neurology, 1997, 377, 29-40.	1.6	1
82	Neuropeptides-immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis. Brain Research Reviews, 1996, 22, 27-50.	9.0	130
83	Rapid quantification of the nitrification inhibitor dicyandiamide in soil samples, nutrient media and bacterial cell-free extracts. Journal of Chromatography A, 1996, 732, 390-393.	3.7	42
84	Neuropeptide Y and somatostatin immunoreactivity in the rat hippocampus after moderate hypoxia. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 354, 67-71.	3.0	11
85	Neuropeptides-immunoreactivity and their mRNA expression in kindling: functional implications for limbic epileptogenesis. Brain Research Reviews, 1996, 22, 27-50.	9.0	103
86	Neuropeptide Y inhibits potassiumâ€stimulated glutamate release through Y ₂ receptors in rat hippocampal slices <i>in vitro</i> . British Journal of Pharmacology, 1994, 113, 737-740.	5.4	181