William Frey Ii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5445681/publications.pdf

Version: 2024-02-01

41344 29157 113 11,258 49 104 citations h-index g-index papers 128 128 128 10205 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Brain Glucose Hypometabolism and Iron Accumulation in Different Brain Regions in Alzheimer's and Parkinson's Diseases. Pharmaceuticals, 2022, 15, 551.	3.8	6
2	A non-invasive direct nose to brain drug delivery platform vs. invasive brain delivery approach: patient-centered care impact analysis. Drug Delivery, 2022, 29, 1754-1763.	5.7	4
3	Mechanisms of Intranasal Deferoxamine in Neurodegenerative and Neurovascular Disease. Pharmaceuticals, 2021, 14, 95.	3.8	27
4	Losartan Improves Memory, Neurogenesis and Cell Motility in Transgenic Alzheimer's Mice. Pharmaceuticals, 2021, 14, 166.	3.8	19
5	Comparative Effectiveness of Intracerebroventricular, Intrathecal, and Intranasal Routes of AAV9 Vector Administration for Genetic Therapy of Neurologic Disease in Murine Mucopolysaccharidosis Type I. Frontiers in Molecular Neuroscience, 2021, 14, 618360.	2.9	21
6	Nasal oxytocin for the treatment of psychiatric disorders and pain: achieving meaningful brain concentrations. Translational Psychiatry, 2021, 11 , 388 .	4.8	23
7	Intranasal delivery of low-dose insulin ameliorates motor dysfunction and dopaminergic cell death in a 6-OHDA rat model of Parkinson's Disease. Neuroscience Letters, 2020, 714, 134567.	2.1	30
8	Intranasal delivery of Thyroid hormones in MCT8 deficiency. PLoS ONE, 2020, 15, e0236113.	2.5	9
9	Cell motility and migration as determinants of stem cell efficacy. EBioMedicine, 2020, 60, 102989.	6.1	26
10	A phase II, single center, randomized, doubleâ€blind, placeboâ€controlled study of the safety and therapeutic effectiveness of intranasal glulisine in amnestic mild cognitive impairment and probable mild Alzheimer's disease. Alzheimer's and Dementia, 2020, 16, e036840.	0.8	1
11	Antifibrotic Effects of Amyloid-Beta and Its Loss in Cirrhotic Liver. Cells, 2020, 9, 452.	4.1	8
12	Intranasal Insulin: a Treatment Strategy for Addiction. Neurotherapeutics, 2020, 17, 105-115.	4.4	12
13	Intranasal deferoxamine can improve memory in healthy C57 mice, suggesting a partially nonâ€diseaseâ€specific pathway of functional neurologic improvement. Brain and Behavior, 2020, 10, e01536.	2.2	11
14	Quantifying Intranasally Administered Deferoxamine in Rat Brain Tissue with Mass Spectrometry. ACS Chemical Neuroscience, 2019, 10, 4571-4578.	3.5	3
15	Intranasal Losartan Decreases Perivascular Beta Amyloid, Inflammation, and the Decline of Neurogenesis in Hypertensive Rats. Neurotherapeutics, 2019, 16, 725-740.	4.4	30
16	Pharmacokinetics in Rat of P8, a Peptide Drug Candidate for the Treatment of Alzheimer's Disease: Stability and Delivery to the Brain1. Journal of Alzheimer's Disease Reports, 2018, 2, 169-179.	2.2	5
17	Intranasal insulin treatment of an experimental model of moderate traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 3203-3218.	4.3	60
18	Oxytocin and Migraine Headache. Headache, 2017, 57, 64-75.	3.9	61

#	Article	IF	CITATIONS
19	Intranasal Adeno-Associated Virus Mediated Gene Delivery and Expression of Human Iduronidase in the Central Nervous System: A Noninvasive and Effective Approach for Prevention of Neurologic Disease in Mucopolysaccharidosis Type I. Human Gene Therapy, 2017, 28, 576-587.	2.7	50
20	25. Intranasal Gene Delivery of AAV Iduronidase: An Effective and Non-Invasive Approach for Treatmentof CNS Disease in a Murine Model of MPS Type I. Molecular Therapy, 2016, 24, S12.	8.2	0
21	Food consumption and activity levels increase in rats following intranasal Hypocretin-1. Neuroscience Letters, 2016, 627, 155-159.	2.1	20
22	Intranasal delivery of obidoxime to the brain prevents mortality and CNS damage from organophosphate poisoning. NeuroToxicology, 2016, 53, 64-73.	3.0	31
23	Oxytocin receptor: Expression in the trigeminal nociceptive system and potential role in the treatment of headache disorders. Cephalalgia, 2016, 36, 943-950.	3.9	53
24	P2-313: Intranasal deferoxamine prevents memory loss in the intracerebroventricular streptozotocin rat model of Alzheimer's disease., 2015, 11, P613-P614.		2
25	706. Non-Invasive Intranasal Administration of AAV9-Iduronidase Prevents Emergence of Neurologic Disease and Neurocognitive Dysfunction in a Murine Model of Mucopolysaccharidosis Type I. Molecular Therapy, 2015, 23, S281.	8.2	0
26	Intranasal deferoxamine engages multiple pathways to decrease memory loss in the APP/PS1 model of amyloid accumulation. Neuroscience Letters, 2015, 584, 362-367.	2.1	50
27	Intranasal Delivery of Bone Marrow-Derived Mesenchymal Stem Cells, Macrophages, and Microglia to the Brain in Mouse Models of Alzheimer's and Parkinson's Disease. Cell Transplantation, 2014, 23, 123-139.	2.5	114
28	A Single-Dose Pilot Trial of Intranasal Rapid-Acting Insulin in ApolipoproteinÂE4 Carriers with Mild–Moderate Alzheimer's Disease. CNS Drugs, 2014, 28, 1185-1189.	5.9	47
29	Intranasal Insulin Ameliorates Experimental Diabetic Neuropathy. Diabetes 2009;58:934–945. DOI: 10.2337/db08-1287. Diabetes, 2014, 63, 1817.2-1817.	0.6	0
30	Intranasally-administered deferoxamine mitigates toxicity of 6-OHDA in a rat model of Parkinson×3s disease. Brain Research, 2014, 1574, 96-104.	2.2	31
31	Intranasal Insulin as a Treatment for Alzheimer's Disease: A Review of Basic Research and Clinical Evidence. CNS Drugs, 2013, 27, 505-514.	5.9	402
32	Intranasal Treatment of Central Nervous System Dysfunction in Humans. Pharmaceutical Research, 2013, 30, 2475-2484.	3.5	253
33	Intranasal Insulin to Treat and Protect Against Posttraumatic Stress Disorder. Journal of Nervous and Mental Disease, 2013, 201, 638-639.	1.0	14
34	Insulin to treat Alzheimer's disease: just follow your nose?. Expert Review of Clinical Pharmacology, 2012, 5, 17-20.	3.1	19
35	Lysosomal enzyme can bypass the blood–brain barrier and reach the CNS following intranasal administration. Molecular Genetics and Metabolism, 2012, 106, 131-134.	1.1	45
36	Intranasal treatment of neurodegenerative diseases and stroke. Frontiers in Bioscience - Scholar, 2012, S4, 74.	2.1	22

3

#	Article	IF	CITATIONS
37	Intranasal delivery of siRNA to the olfactory bulbs of mice via the olfactory nerve pathway. Neuroscience Letters, 2012, 513, 193-197.	2.1	51
38	Intranasal delivery of insulin via the olfactory nerve pathway. Journal of Pharmacy and Pharmacology, 2012, 64, 1709-1714.	2.4	90
39	Intranasal delivery of growth differentiation factor 5 to the central nervous system. Drug Delivery, 2012, 19, 149-154.	5.7	27
40	Brain Insulin Signaling and Alzheimer's Disease: Current Evidence and Future Directions. Molecular Neurobiology, 2012, 46, 4-10.	4.0	145
41	Intranasal delivery of deferoxamine reduces spatial memory loss in APP/PS1 mice. Drug Delivery and Translational Research, 2012, 2, 160-168.	5.8	34
42	Intranasal deferoxamine improves performance in radial arm water maze, stabilizes HIF-1α, and phosphorylates GSK3β in P301L tau transgenic mice. Experimental Brain Research, 2012, 219, 381-390.	1.5	66
43	Subacute intranasal administration of tissue plasminogen activator increases functional recovery and axonal remodeling after stroke in rats. Neurobiology of Disease, 2012, 45, 804-809.	4.4	42
44	Therapeutic Efficacy of Intranasally Delivered Mesenchymal Stem Cells in a Rat Model of Parkinson Disease. Rejuvenation Research, 2011, 14, 3-16.	1.8	225
45	Motor End Plate Innervation Loss in Diabetes and the Role of Insulin. Journal of Neuropathology and Experimental Neurology, 2011, 70, 323-339.	1.7	29
46	Intranasal insulin as a therapeutic option in the treatment of cognitive impairments. Experimental Gerontology, 2011, 46, 112-115.	2.8	134
47	Intranasal Phosphoramidon Increases Beta-Amyloid Levels in Wild-Type and NEP/NEP2-Deficient Mice. Journal of Molecular Neuroscience, 2011, 43, 424-427.	2.3	21
48	Intranasal Delivery of Caspase-9 Inhibitor Reduces Caspase-6-Dependent Axon/Neuron Loss and Improves Neurological Function after Stroke. Journal of Neuroscience, 2011, 31, 8894-8904.	3.6	84
49	Cannabinoid-Mediated Modulation of Neuropathic Pain and Microglial Accumulation in a Model of Murine Type I Diabetic Peripheral Neuropathic Pain. Molecular Pain, 2010, 6, 1744-8069-6-16.	2.1	116
50	Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. Journal of Pharmaceutical Sciences, 2010, 99, 1654-1673.	3.3	939
51	Protective Effects of Intranasal Losartan in the APP/PS1 Transgenic Mouse Model of Alzheimer Disease. Rejuvenation Research, 2010, 13, 195-201.	1.8	139
52	Trigeminal Pathways Deliver a Low Molecular Weight Drug from the Nose to the Brain and Orofacial Structures. Molecular Pharmaceutics, 2010, 7, 884-893.	4.6	136
53	Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. Journal of Drug Targeting, 2010, 18, 179-190.	4.4	138
54	Intranasal Deferoxamine Provides Increased Brain Exposure and Significant Protection in Rat Ischemic Stroke. Journal of Pharmacology and Experimental Therapeutics, 2009, 330, 679-686.	2.5	188

#	Article	IF	Citations
55	Intranasal Insulin Ameliorates Experimental Diabetic Neuropathy. Diabetes, 2009, 58, 934-945.	0.6	69
56	Intranasal delivery of cells to the brain. European Journal of Cell Biology, 2009, 88, 315-324.	3.6	299
57	Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system. Journal of Pharmaceutical Sciences, 2009, 98, 2501-2515.	3.3	106
58	Human and rodent amyloid-l̂² peptides differentially bind heme: Relevance to the human susceptibility to Alzheimer's disease. Archives of Biochemistry and Biophysics, 2009, 487, 59-65.	3.0	82
59	Novel Vasoconstrictor Formulation to Enhance Intranasal Targeting of Neuropeptide Therapeutics to the Central Nervous System. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 312-320.	2.5	77
60	Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neuroscience, 2008, 9, S5.	1.9	509
61	Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone. BMC Neuroscience, 2008, 9, 117.	1.9	120
62	Preventing \hat{l}^2 -amyloid fibrillization and deposition: \hat{l}^2 -sheet breakers and pathological chaperone inhibitors. BMC Neuroscience, 2008, 9, S5.	1.9	41
63	Intranasal administration delivers peptoids to the rat central nervous system. Neuroscience Letters, 2008, 439, 30-33.	2.1	38
64	Delivery of interferon- \hat{l}^2 to the monkey nervous system following intranasal administration. Neuroscience, 2008, 152, 785-797.	2.3	210
65	Intranasal delivery of insulin and a nitric oxide synthase inhibitor in an experimental model of amyotrophic lateral sclerosis. Neuroscience, 2008, 157, 908-925.	2.3	21
66	New therapeutic approach for brain tumors: Intranasal delivery of telomerase inhibitor GRN163. Neuro-Oncology, 2008, 10, 112-120.	1.2	126
67	Intranasal Insulin Administration Dose-Dependently Modulates Verbal Memory and Plasma Amyloid- \hat{l}^2 in Memory-Impaired Older Adults. Journal of Alzheimer's Disease, 2008, 13, 323-331.	2.6	477
68	Intranasal Delivery—A New Therapeutic Approach for Brain Tumors. US Neurology, 2008, 04, 43.	0.2	1
69	Apoptotic Gene Expression in Alzheimer's Disease Hippocampal Tissue. American Journal of Alzheimer's Disease and Other Dementias, 2007, 22, 319-328.	1.9	46
70	Intranasally delivered TGF- \hat{l}^21 enters brain and regulates gene expressions of its receptors in rats. Brain Research Bulletin, 2007, 74, 271-277.	3.0	40
71	Mechanisms of mitochondrial dysfunction and energy deficiency in Alzheimer's disease. Mitochondrion, 2007, 7, 297-310.	3.4	239
72	Intranasal administration of a PARG inhibitor profoundly decreases ischemic brain injury. Frontiers in Bioscience - Landmark, 2007, 12, 4986.	3.0	32

#	Article	IF	Citations
73	Strategies for Intranasal Delivery of Therapeutics for the Prevention and Treatment of NeuroAIDS. Journal of NeuroImmune Pharmacology, 2007, 2, 81-86.	4.1	102
74	Intranasal Tat Alters Gene Expression in the Mouse Brain. Journal of NeuroImmune Pharmacology, 2007, 2, 87-92.	4.1	13
75	Effects of intranasal insulin on cognition in memory-impaired older adults: Modulation by APOE genotype. Neurobiology of Aging, 2006, 27, 451-458.	3.1	560
76	Chlamydophila (Chlamydia) pneumoniaein the Alzheimer's brain. FEMS Immunology and Medical Microbiology, 2006, 48, 355-366.	2.7	140
77	Inhibition of Ligand Binding to G Protein-Coupled Receptors by Arachidonic Acid. Journal of Molecular Neuroscience, 2005, 27, 185-194.	2.3	6
78	The clinical diagnosis of Alzheimer's disease without the use of head imaging studies. A cliniconeuropathological study. Journal of Alzheimer's Disease, 2004, 5, 463-465.	2.6	1
79	Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. Journal of Neuroimmunology, 2004, 151, 66-77.	2.3	211
80	A role for heme in Alzheimer's disease: Heme binds amyloid \hat{l}^2 and has altered metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 11153-11158.	7.1	228
81	Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 2004, 127, 481-496.	2.3	788
82	The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. Journal of Stroke and Cerebrovascular Diseases, 2004, 13, 16-23.	1.6	74
83	Inactivation of the human brain muscarinic acetylcholine receptor by oxidative damage catalyzed by a low molecular weight endogenous inhibitor from Alzheimer's brain is prevented by pyrophosphate analogs, bioflavonoids and other antioxidants. Brain Research, 2002, 950, 10-20.	2.2	56
84	Delivery of Neurotrophic Factors to the Central Nervous System. Clinical Pharmacokinetics, 2001, 40, 907-946.	3.5	415
85	Intranasal administration of insulin-like growth factor-l bypasses the blood–brain barrier and protects against focal cerebral ischemic damage. Journal of the Neurological Sciences, 2001, 187, 91-97.	0.6	216
86	Non-invasive intranasal insulin-like growth factor-I reduces infarct volume and improves neurologic function in rats following middle cerebral artery occlusion. Neuroscience Letters, 2001, 308, 91-94.	2.1	136
87	Anandamides Inhibit Binding to the Muscarinic Acetylcholine Receptor. Journal of Molecular Neuroscience, 1999, 13, 55-62.	2.3	35
88	Previously reported nerve growth factor levels are underestimated due to an incomplete release from receptors and interaction with standard curve media. Brain Research, 1999, 842, 206-210.	2.2	7
89	Inhibition of antagonist and agonist binding to the human brain muscarinic receptor by arachidonic acid. Journal of Molecular Neuroscience, 1998, 10, 209-217.	2.3	16
90	Delivery of Nerve Growth Factor to the Brain via the Olfactory Pathway. Journal of Alzheimer's Disease, 1998, 1, 35-44.	2.6	211

#	Article	IF	Citations
91	Delivery of sup > 125 / sup > I-NGF to the Brain via the Olfactory Route. Drug Delivery, 1997, 4, 87-92.	5.7	191
92	Heme from Alzheimer's brain inhibits muscarinic receptor binding via thiyl radical generation1An abstract of some of these findings was published in Mol. Biol. Cell, 7:S (1996) #3765.1. Brain Research, 1997, 764, 93-100.	2.2	33
93	Endogenous Alzheimer's brain factor and oxidized glutathione inhibit antagonist binding to the muscarinic receptor. Brain Research, 1996, 714, 87-94.	2.2	21
94	Quantitative analysis of the olfactory pathway for drug delivery to the brain. Brain Research, 1995, 692, 278-282.	2.2	306
95	Clinical Characteristics of Chronic Creutzfeldt-Jakob Disease. Journal of Geriatric Psychiatry and Neurology, 1994, 7, 206-208.	2.3	3
96	Seizures in Alzheimer's Disease: Clinicopathologic Study. Journal of Geriatric Psychiatry and Neurology, 1994, 7, 230-233.	2.3	154
97	Freed-amino acids in human cerebrospinal fluid of alzheimer disease, multiple sclerosis, and healthy control subjects. Molecular and Chemical Neuropathology, 1994, 23, 115-124.	1.0	59
98	Inhibitor of antagonist binding to the muscarinic receptor is elevated in Alzheimer's brain. Brain Research, 1994, 655, 153-160.	2.2	13
99	Clinically Diagnosed Alzheimer Disease. Alzheimer Disease and Associated Disorders, 1992, 6, 35-43.	1.3	105
100	Racemized D-aspartate in Alzheimer neurofibrillary tangles. Brain Research Bulletin, 1992, 28, 127-131.	3.0	39
101	Altered aspartate in Alzheimer neurofibrillary tangles. Neurochemical Research, 1992, 17, 187-191.	3.3	39
102	Seasonal Distribution of Births in Alzheimer's Disease. International Psychogeriatrics, 1991, 3, 53-58.	1.0	14
103	Neuropathologically Confirmed Alzheimer's Disease: Clinical Diagnoses in 394 Cases. Topics in Geriatrics, 1991, 4, 26-29.	0.8	9
104	The Tears of the Physician. JAMA - Journal of the American Medical Association, 1990, 263, 661.	7.4	0
105	d-Aspartate in Human Brain. Journal of Neurochemistry, 1987, 48, 510-515.	3.9	69
106	Human brain tubulin purification: Decrease in soluble tubulin with age. Neurochemical Research, 1985, 10, 1-18.	3.3	43
107	Glial fibrillary acidic protein and Alzheimer's disease. Neurochemical Research, 1985, 10, 1567-1576.	3.3	35
108	Polyethylene glycol interferes with protein molecular weight determinations by gel filtration. Analytical Biochemistry, 1984, 138, 137-140.	2.4	16

WILLIAM FREY II

#	Article	IF	CITATIONS
109	lonic regulation of antagonist binding to the human muscarinic cholinergic receptor of caudate nucleus. Journal of Psychiatric Research, 1982, 17, 275-283.	3.1	6
110	Postmortem Stability of Dopamine-Sensitive Adenylate Cyclase, Guanylate Cyclase, ATPase, and GTPase in Rat Striatum. Journal of Neurochemistry, 1981, 37, 1535-1539.	3.9	17
111	Stimulation of guanylate cyclase by EDTA and other chelating agents. Biochimica Et Biophysica Acta - Biomembranes, 1981, 658, 369-376.	2.6	1
112	Catecholamine-Sensitive Guanylate Cyclase from Human Caudate Nucleus. Journal of Neurochemistry, 1980, 35, 1418-1430.	3.9	13
113	Effect of Dopamine on Activation of Rat Striatal Adenylate Cyclase by Free Mg2+and Guanyl Nucleotides. Journal of Neurochemistry, 1980, 34, 594-601.	3.9	21