List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5445628/publications.pdf Version: 2024-02-01

Μαρτινία

#	Article	IF	CITATIONS
1	Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). Journal of Translational Medicine, 2022, 20, 138.	4.4	116
2	Nidogenâ€1 Mitigates Ischemia and Promotes Tissue Survival and Regeneration. Advanced Science, 2021, 8, 2002500.	11.2	15
3	Therapies with CCL25 require controlled release via microparticles to avoid strong inflammatory reactions. Journal of Nanobiotechnology, 2021, 19, 83.	9.1	3
4	MiRNA Profiles of Extracellular Vesicles Secreted by Mesenchymal Stromal Cells—Can They Predict Potential Off-Target Effects?. Biomolecules, 2020, 10, 1353.	4.0	14
5	Human mesenchymal stromal cells and derived extracellular vesicles: Translational strategies to increase their proangiogenic potential for the treatment of cardiovascular disease. Stem Cells Translational Medicine, 2020, 9, 1558-1569.	3.3	26
6	Fibronectin Adsorption on Electrospun Synthetic Vascular Grafts Attracts Endothelial Progenitor Cells and Promotes Endothelialization in Dynamic In Vitro Culture. Cells, 2020, 9, 778.	4.1	39
7	Enhanced Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal Stromal-Like Cells for Allogeneic Cell Therapies. Frontiers in Immunology, 2019, 10, 1716.	4.8	9
8	The TL1A-DR3 Axis Selectively Drives Effector Functions in Human MAIT Cells. Journal of Immunology, 2019, 203, 2970-2978.	0.8	5
9	A Polymorphonuclear Leukocyte Assay to Assess Implant Immunocompatibility. Tissue Engineering - Part C: Methods, 2019, 25, 500-511.	2.1	3
10	Extracellular vesicles from regenerative human cardiac cells act as potent immune modulators by priming monocytes. Journal of Nanobiotechnology, 2019, 17, 72.	9.1	19
11	Cardiac Extracellular Vesicles (EVs) Released in the Presence or Absence of Inflammatory Cues Support Angiogenesis in Different Manners. International Journal of Molecular Sciences, 2019, 20, 6363.	4.1	4
12	Surface functionalization of electrospun scaffolds using recombinant human decorin attracts circulating endothelial progenitor cells. Scientific Reports, 2018, 8, 110.	3.3	18
13	Impact of T-cell-mediated immune response on xenogeneic heart valve transplantation: short-term success and mid-term failure. European Journal of Cardio-thoracic Surgery, 2018, 53, 784-792.	1.4	8
14	Effects on human heart valve immunogenicity <i>in vitro</i> by high concentration cryoprotectant treatment. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1046-e1055.	2.7	8
15	The atrial appendage as a suitable source to generate cardiacâ€derived adherent proliferating cells for regenerative cellâ€based therapies. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, e1404-e1417.	2.7	10
16	Towards a Novel Patch Material for Cardiac Applications: Tissue-Specific Extracellular Matrix Introduces Essential Key Features to Decellularized Amniotic Membrane. International Journal of Molecular Sciences, 2018, 19, 1032.	4.1	34
17	Stromal Cells Act as Guardians for Endothelial Progenitors by Reducing Their Immunogenicity After Co-Transplantation. Stem Cells, 2017, 35, 1233-1245.	3.2	30
18	New insights into tenocyte-immune cell interplay in an in vitro model of inflammation. Scientific Reports, 2017, 7, 9801.	3.3	61

#	Article	IF	CITATIONS
19	The choice of cryopreservation method affects immune compatibility of human cardiovascular matrices. Scientific Reports, 2017, 7, 17027.	3.3	16
20	Myocardial Regeneration via Progenitor Cell-Derived Exosomes. Stem Cells International, 2017, 2017, 1-10.	2.5	15
21	Decellularized amniotic membrane attenuates postinfarct left ventricular remodeling. Journal of Surgical Research, 2016, 200, 409-419.	1.6	31
22	Regenerative and Immunogenic Characteristics of Cultured Nucleus Pulposus Cells from Human Cervical Intervertebral Discs. PLoS ONE, 2015, 10, e0126954.	2.5	20
23	Xeno-immunogenicity of ice-free cryopreserved porcine leaflets. Journal of Surgical Research, 2015, 193, 933-941.	1.6	11
24	Hypoxic Preconditioning Increases Survival and Pro-Angiogenic Capacity of Human Cord Blood Mesenchymal Stromal Cells In Vitro. PLoS ONE, 2015, 10, e0138477.	2.5	88
25	Protein contaminations impact quantification and functional analysis of extracellular vesicle preparations from mesenchymal stromal cells. Journal of Stem Cells and Regenerative Medicine, 2015, 11, 44-47.	2.2	8
26	Preserved bioactivity and tunable release of a SDF1-GPVI bi-specific protein using photo-crosslinked PEGda hydrogels. Biomaterials, 2014, 35, 7180-7187.	11.4	42
27	Immune attributes of cardiac-derived adherent proliferating (CAP) cells in cardiac therapy. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 362-370.	2.7	15
28	Absence of Immune Responses with Xenogeneic Collagen and Elastin. Tissue Engineering - Part A, 2013, 19, 1592-1600.	3.1	28
29	Evaluation of Immunogenicity of Rat ES-Cell Derived Endothelial Cells. Methods in Molecular Biology, 2013, 1029, 43-63.	0.9	0
30	lschemia–reperfusion injury. Current Opinion in Organ Transplantation, 2013, 18, 34-43.	1.6	73
31	Detrimental effects of rat mesenchymal stromal cell pre-treatment in a model of acute kidney rejection. Frontiers in Immunology, 2012, 3, 202.	4.8	45
32	Oligonucleotide and Parylene Surface Coating of Polystyrene and ePTFE for Improved Endothelial Cell Attachment and Hemocompatibility. International Journal of Biomaterials, 2012, 2012, 1-14.	2.4	16
33	Immune Effects of Mesenchymal Stromal Cells in Experimental Stroke. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 1578-1588.	4.3	43
34	Low-dose cyclosporine mediates donor hyporesponsiveness in a fully mismatched rat kidney transplant model. Transplant Immunology, 2012, 26, 176-185.	1.2	5
35	Crosstalk between immune cells and mesenchymal stromal cells in a 3D bioreactor system. International Journal of Artificial Organs, 2012, 35, 986-995.	1.4	12
36	Crosstalk between Immune Cells and Mesenchymal Stromal Cells in a 3D Bioreactor System. International Journal of Artificial Organs, 2012, 35, 986-995.	1.4	14

#	Article	IF	CITATIONS
37	Engineering of fibrillar decorin matrices for a tissue-engineered trachea. Biomaterials, 2012, 33, 5259-5266.	11.4	66
38	Mechanism of Cardiovascular Tissue Immunogenicity Reduction by Ice-free Cryopreservation. , 2012, , .		0
39	Gelatin and Decorin are Suitable Candidates for Application in Tissue-Engineered Matrices - an Immunological In Vitro Study. , 2012, , .		0
40	Electrospun Proteoglycan Matrices for Tracheal Tissue Engineering. FASEB Journal, 2012, 26, 911.1.	0.5	0
41	Human Cardiac-Derived Adherent Proliferating Cells Reduce Murine Acute Coxsackievirus B3-Induced Myocarditis. PLoS ONE, 2011, 6, e28513.	2.5	44
42	In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia. Transplant International, 2011, 24, 1112-1123.	1.6	55
43	Immunomodulative Efficacy of Bone Marrow-Derived Mesenchymal Stem Cells Cultured in Human Platelet Lysate. Journal of Clinical Immunology, 2011, 31, 1143-1156.	3.8	71
44	Immunobiology of naÃ ⁻ ve and genetically modified HLA-class-I-knockdown human embryonic stem cells. Journal of Cell Science, 2011, 124, 3029-3037.	2.0	36
45	Human Leukocyte Antigen I Knockdown Human Embryonic Stem Cells Induce Host Ignorance and Achieve Prolonged Xenogeneic Survival. Circulation, 2011, 124, S3-9.	1.6	28
46	Advancement of Mesenchymal Stem Cell Therapy in Solid Organ Transplantation (MISOT). Transplantation, 2010, 90, 124-126.	1.0	66
47	Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials, 2010, 31, 3793-3803.	11.4	86
48	Immune privilege of endothelial cells differentiated from endothelial progenitor cells. Cardiovascular Research, 2010, 88, 121-129.	3.8	43
49	Low immunogenicity of endothelial derivatives from rat embryonic stem cell-like cells. Cell Research, 2009, 19, 507-518.	12.0	16
50	Toward MSC in Solid Organ Transplantation: 2008 Position Paper of the MISOT Study Group. Transplantation, 2009, 88, 614-619.	1.0	64
51	The structure of the antiâ€câ€myc antibody 9E10 Fab fragment/epitope peptide complex reveals a novel binding mode dominated by the heavy chain hypervariable loops. Proteins: Structure, Function and Bioinformatics, 2008, 73, 552-565.	2.6	21
52	Modulation of Graft Arteriosclerosis in a Rat Carotid Transplantation Model. Journal of Surgical Research, 2008, 145, 161-169.	1.6	9
53	Structure of an antiâ€cholera toxin antibody Fab in complex with an epitopeâ€derived <scp>D</scp> â€peptide: a case of polyspecific recognition. Journal of Molecular Recognition, 2007, 20, 263-274.	2.1	6
54	An anti-major histocompatibility complex class I intrabody protects endothelial cells from an attack by immune mediators. Cardiovascular Research, 2006, 72, 331-338.	3.8	10

#	Article	IF	CITATIONS
55	Decline of surface MHC I by adenoviral gene transfer of anti-MHC I intrabodies in human endothelial cells—new perspectives for the generation of universal donor cells for tissue transplantation. Journal of Gene Medicine, 2004, 6, 616-623.	2.8	28
56	MHC class I manipulation on cell surfaces by gene transfer of anti-MHC class I intrabodies?a tool for decreased immunogenicity of allogeneic tissue and cell transplants. Methods, 2004, 34, 240-249.	3.8	12
57	Keratinocyte unresponsiveness towards interleukin-10: lack of specific binding due to deficient IL-10 receptor 1 expression. Experimental Dermatology, 2003, 12, 137-144.	2.9	18
58	Alkyl-substituted magnesium phthalocyanine: phototoxicity after excitation of higher electronic states in cells <i>in vitro</i> . Journal of Porphyrins and Phthalocyanines, 2002, 06, 340-346.	0.8	6
59	Efficient in vitro transduction of epithelial cells and keratinocytes with improved adenoviral gene transfer for the application in skin tissue engineering. Transplant Immunology, 2002, 9, 323-329.	1.2	19
60	Cross-reactive binding of cyclic peptides to an anti-TGFα antibody Fab fragment: an X-ray structural and thermodynamic analysis. Journal of Molecular Biology, 2001, 314, 293-309.	4.2	44
61	Changing the Antigen Binding Specificity by Single Point Mutations of an Anti-p24 (HIV-1) Antibody. Journal of Immunology, 2000, 165, 4505-4514.	0.8	30
62	Inhibition of Keratinocyte Apoptosis by IL-15: A New Parameter in the Pathogenesis of Psoriasis?. Journal of Immunology, 2000, 165, 2240-2250.	0.8	503
63	Evidence for conformationally different states of interleukin-10: binding of a neutralizing antibody enhances accessibility of a hidden epitope. , 1999, 12, 242-248.		29
64	Mapping protein-protein contact sites using cellulose-bound peptide scans. Molecular Diversity, 1996, 1, 141-148.	3.9	56
65	Generation and Characterization of a Human Monoclonal IgM Antibody That Recognizes a Conserved Epitope Shared by Lipopolysaccharides of Different Gram-Negative Bacteria. Hybridoma, 1996, 15, 191-198.	0.6	11
66	Potential Role of Endothelin in the Physiological and Pathological Regulation of Kidney Function. Endothelium: Journal of Endothelial Cell Research, 1993, 1, 71-83.	1.7	9
67	Lymphocyte surface marker expression on hybridomas secreting human monoclonal antibodies. Human Antibodies, 1992, 3, 86-92.	1.5	1