
Giancarlo Consolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5443676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oscillatory periodic pattern dynamics in hyperbolic reaction-advection-diffusion models. Physical Review E, 2022, 105, 034206.	2.1	11
2	Postmortem Electrical Conductivity Changes of Dicentrarchus labrax Skeletal Muscle: Root Mean Square (RMS) Parameter in Estimating Time since Death. Animals, 2022, 12, 1062.	2.3	1
3	Strain-mediated propagation of magnetic domain-walls in cubic magnetostrictive materials. Ricerche Di Matematica, 2021, 70, 81-97.	1.0	7
4	Human Factors Modelling Approach: Application to a Safety Device Supporting Crane Operations in Major Hazard Industries. Sustainability, 2021, 13, 2304.	3.2	8
5	Theory of the electric field controlled antiferromagnetic spin Hall oscillator and detector. Physical Review B, 2021, 103, .	3.2	12
6	Optimized Voltage-Induced Control of Magnetic Domain-Wall Propagation in Hybrid Piezoelectric/Magnetostrictive Devices. Actuators, 2021, 10, 134.	2.3	1
7	Magnetostriction in transversely isotropic hexagonal crystals. Physical Review B, 2020, 101, .	3.2	10
8	Modelling prey-predator interactions in Messina beachrock pools. Ecological Modelling, 2020, 434, 109206.	2.5	19
9	Turing vegetation patterns in a generalized hyperbolic Klausmeier model. Mathematical Methods in the Applied Sciences, 2020, 43, 10474-10489.	2.3	13
10	On the statics and dynamics of transverse domain walls in bilayer piezoelectric-magnetostrictive nanostructures. Applied Mathematical Modelling, 2020, 83, 13-29.	4.2	7
11	Secondary seed dispersal in the Klausmeier model of vegetation for sloped semi-arid environments. Ecological Modelling, 2019, 402, 66-75.	2.5	17
12	Supercritical and subcritical Turing pattern formation in a hyperbolic vegetation model for flat arid environments. Physica D: Nonlinear Phenomena, 2019, 398, 141-163.	2.8	24
13	Tensor representation of magnetostriction for all crystal classes. Mathematics and Mechanics of Solids, 2019, 24, 2814-2843.	2.4	15
14	Modeling magnetic domain-wall evolution in trilayers with structural inversion asymmetry. Ricerche Di Matematica, 2018, 67, 1001-1015.	1.0	7
15	Analytical solution of the strain-controlled magnetic domain wall motion in bilayer piezoelectric/magnetostrictive nanostructures. Journal of Applied Physics, 2017, 121, .	2.5	18
16	Pattern formation and modulation in a hyperbolic vegetation model for semiarid environments. Applied Mathematical Modelling, 2017, 43, 372-392.	4.2	28
17	Onset of linear instability driven by electric currents in magnetic systems: a Lagrangian approach. Ricerche Di Matematica, 2016, 65, 413-422.	1.0	3
18	Spin-transfer-driven spin-waves excitation in a finite-size magnetic waveguide. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 1161-1168.	2.1	0

GIANCARLO CONSOLO

#	Article	IF	CITATIONS
19	Estimation of the impact probability in domino effects due to the projection of fragments. Chemical Engineering Research and Design, 2015, 93, 99-110.	5.6	33
20	A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain. Mathematical Biosciences and Engineering, 2015, 12, 451-472.	1.9	13
21	Quantitative estimation of the spin-wave features supported by a spin-torque-driven magnetic waveguide. Journal of Applied Physics, 2014, 116, 213908.	2.5	4
22	Synchronization of propagating spin-wave modes in a double-contact spin-torque oscillator: A micromagnetic study. Physica B: Condensed Matter, 2014, 435, 44-49.	2.7	18
23	Curved domain walls dynamics driven by magnetic field and electric current in hard ferromagnets. Applied Mathematical Modelling, 2014, 38, 1001-1010.	4.2	13
24	Excitation of spin waves by a current-driven magnetic nanocontact in a perpendicularly magnetized waveguide. Physical Review B, 2013, 88, .	3.2	12
25	Non-stationary excitation of two localized spin-wave modes in a nano-contact spin torque oscillator. Journal of Applied Physics, 2013, 114, 153906.	2.5	16
26	Spread of infectious diseases in a hyperbolic reaction-diffusion susceptible-infected-removed model. Physical Review E, 2013, 88, 052719.	2.1	33
27	Traveling Wave Solutions of the One-Dimensional Extended Landau-Lifshitz-Gilbert Equation with Nonlinear Dry and Viscous Dissipations. Acta Applicandae Mathematicae, 2012, 122, 141.	1.0	15
28	A Theoretical Study on the Amplitude Symmetry of Sidebands in Nonlinear Modulators. IEEE Transactions on Magnetics, 2012, 48, 4786-4792.	2.1	3
29	Micromagnetic simulations using Graphics Processing Units. Journal Physics D: Applied Physics, 2012, 45, 323001.	2.8	117
30	Mathematical modeling and numerical simulation of domain wall motion in magnetic nanostrips with crystallographic defects. Applied Mathematical Modelling, 2012, 36, 4876-4886.	4.2	26
31	The effect of dry friction on domain wall dynamics: A micromagnetic study. Journal of Applied Physics, 2012, 111, .	2.5	8
32	On the Travelling Wave Solution for the Current-Driven Steady Domain Wall Motion in Magnetic Nanostrips under the Influence of Rashba Field. Advances in Condensed Matter Physics, 2012, 2012, 1-8.	1.1	2
33	Low-Dimensional Magnetic Systems. Advances in Condensed Matter Physics, 2012, 2012, 1-1.	1.1	0
34	Hamiltonian and Lagrangian Dynamical Matrix Approaches Applied to Magnetic Nanostructures. Advances in Condensed Matter Physics, 2012, 2012, 1-16.	1.1	5
35	Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators. Physical Review B, 2012, 85, .	3.2	49
36	Excitation of magnetic normal modes by spin-torque: a Lagrangian approach. Journal of Applied Physics, 2012, 111, 07C916.	2.5	4

#	Article	IF	CITATIONS
37	Hysteretic spin-wave excitation in spin-torque oscillators as a function of the in-plane field angle: A micromagnetic description. Journal of Applied Physics, 2011, 110, 123913.	2.5	10
38	Direct observation of a propagating spin wave induced by spin-transfer torque. Nature Nanotechnology, 2011, 6, 635-638.	31.5	321
39	Lagrangian formulation of the linear autonomous magnetization dynamics in spin-torque auto-oscillators. Applied Mathematics and Computation, 2011, 217, 8204-8215.	2.2	18
40	Modulation of single and double spin torque oscillators. AIP Conference Proceedings, 2011, , .	0.4	8
41	Analytical and Micromagnetic Study of Nonlinear Amplitude Modulation in Spintronic Modulators. IEEE Transactions on Magnetics, 2010, 46, 2063-2066.	2.1	5
42	Reducing the Non-Linearities of a Spin-Torque Oscillator by Varying the Amplitude of the External Field Applied Along the In-Plane Hard-Axis. IEEE Transactions on Magnetics, 2010, 46, 1519-1522.	2.1	9
43	Combined Frequency-Amplitude Nonlinear Modulation: Theory and Applications. IEEE Transactions on Magnetics, 2010, 46, 3629-3634.	2.1	41
44	Spin-wave activation by spin-polarized current pulse in magnetic nanopillars. Journal of Magnetism and Magnetic Materials, 2010, 322, 2330-2334.	2.3	17
45	Nonlinear frequency and amplitude modulation of a nanocontact-based spin-torque oscillator. Physical Review B, 2010, 81, .	3.2	89
46	Oscillatory transient regime in the forced dynamics of a nonlinear auto oscillator. Physical Review B, 2010, 82, .	3.2	42
47	Experimental Evidence of Self-Localized and Propagating Spin Wave Modes in Obliquely Magnetized Current-Driven Nanocontacts. Physical Review Letters, 2010, 105, 217204.	7.8	176
48	Nonstationary magnetization dynamics driven by spin transfer torque. Physical Review B, 2009, 79, .	3.2	21
49	Magnetic vortex driven by non-uniform injection of spin-polarized current in nano-scale spin valves. Journal of Magnetism and Magnetic Materials, 2009, 321, 602-606.	2.3	0
50	Micromagnetic Analysis of Nonlinear Dynamics in Spintronic Analog Modulators. IEEE Transactions on Magnetics, 2009, 45, 5239-5242.	2.1	8
51	Numerical Analysis of the Nonlinear Excitation of Subcritical Spin-Wave Modes Within a Micromagnetic Framework. IEEE Transactions on Magnetics, 2009, 45, 5220-5223.	2.1	5
52	Micromagnetic simulations of persistent oscillatory modes excited by spin-polarized current in nanoscale exchange-biased spin valves. Journal of Applied Physics, 2009, 105, 07D107.	2.5	13
53	Spin-wave excitation by spin-polarized current in magnetic nanostructures. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 2391-2395.	0.8	2
54	A numerical solution of the magnetization reversal modeling in a permalloy thin film using fifth order Runge–Kutta method with adaptive step size control. Physica B: Condensed Matter, 2008, 403, 464-468.	2.7	58

GIANCARLO CONSOLO

#	Article	IF	CITATIONS
55	Numerical study of the magnetization reversal driven by spin-polarized current in MgO-based magnetic tunnel junctions. Physica B: Condensed Matter, 2008, 403, 364-367.	2.7	1
56	Micromagnetic Modeling of Nanocontact Spin-Torque Oscillators With Perpendicular Anisotropy at Zero Bias Field. IEEE Transactions on Magnetics, 2008, 44, 2512-2515.	2.1	14
57	Micromagnetic study of the above-threshold generation regime in a spin-torque oscillator based on a magnetic nanocontact magnetized at an arbitrary angle. Physical Review B, 2008, 78, .	3.2	41
58	Magnetization dynamics in nanocontact current controlled oscillators. Physical Review B, 2007, 75, .	3.2	33
59	Nanocontact spin-transfer oscillators based on perpendicular anisotropy in the free layer. Applied Physics Letters, 2007, 91, .	3.3	19
60	Micromagnetic modal analysis of spin-transfer-driven ferromagnetic resonance of individual nanomagnets. Journal of Applied Physics, 2007, 101, 09A502.	2.5	22
61	Influence of the Oersted field in the dynamics of spin-transfer microwave oscillators. Journal of Applied Physics, 2007, 101, 09C108.	2.5	15
62	Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts: A micromagnetic study. Physical Review B, 2007, 76, .	3.2	54
63	Magnetization dynamics in CoFeâ^•AlO/Permalloy and CoFeâ^•MgO/Permalloy magnetic tunnel junctions. Journal of Applied Physics, 2007, 101, 09A508.	2.5	4
64	Magnetization dynamics driven by spin-polarized current in nanomagnets. Journal of Magnetism and Magnetic Materials, 2007, 316, 488-491.	2.3	26
65	Spin-torque switching in Py/Cu/Py and Py/Cu/CoPt spin-valve nanopillars. Journal of Magnetism and Magnetic Materials, 2007, 316, 492-495.	2.3	12
66	Micromagnetic Modeling of Magnetization Reversal in Nano-Scale Point Contact Devices. IEEE Transactions on Magnetics, 2007, 43, 2938-2940.	2.1	12
67	Spin-Transfer Torque Switching in Magnetic Multilayers. IEEE Transactions on Magnetics, 2007, 43, 1677-1680.	2.1	3
68	Influence of Different Spatial Distributions of Current Density and Spin-Torque Efficiency in the Dynamics of Point-Contact Devices. IEEE Transactions on Magnetics, 2007, 43, 2827-2829.	2.1	6
69	Boundary Conditions for Spin-Wave Absorption Based on Different Site-Dependent Damping Functions. IEEE Transactions on Magnetics, 2007, 43, 2974-2976.	2.1	32
70	Magnetization dynamics driven by the combined action of ac magnetic field and dc spin-polarized current. Journal of Applied Physics, 2006, 99, 08G507.	2.5	28
71	Removing numerical instabilities in the Preisach model identification using genetic algorithms. Physica B: Condensed Matter, 2006, 372, 91-96.	2.7	4
72	A genetic approach to solve numerical problems in the Preisach model identification. IEEE Transactions on Magnetics, 2006, 42, 1526-1537.	2.1	4

#	Article	IF	CITATIONS
73	About identification of Scalar Preisach functions of soft magnetic materials. IEEE Transactions on Magnetics, 2006, 42, 923-926.	2.1	26
74	Trends in spin-transfer-driven magnetization dynamics of CoFeâ^•AlOâ^•Py and CoFeâ^•MgOâ^•Py magnetic tunnel junctions. Applied Physics Letters, 2006, 89, 262509.	3.3	27
75	Remarks about a fuzzy approach to model scalar hysteresis. Journal of Applied Physics, 2005, 97, 10E507.	2.5	1
76	Spin-transfer torque switching in magnetic multilayers. , 0, , .		0