Abraham Fainsod

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5443258/publications.pdf

Version: 2024-02-01

58 papers	2,489 citations	218677 26 h-index	197818 49 g-index
60	60	60	2073
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced Loss of Retinoic Acid Network Genes in Xenopus laevis Achieves a Tighter Signal Regulation. Cells, 2022, 11, 327.	4.1	1
2	Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly. Frontiers in Cell and Developmental Biology, 2022, 10, 844619.	3.7	8
3	Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. Frontiers in Cell and Developmental Biology, 2022, 10, 857230.	3.7	3
4	Retinoic Acid Fluctuation Activates an Uneven, Direction-Dependent Network-Wide Robustness Response in Early Embryogenesis. Frontiers in Cell and Developmental Biology, 2021, 9, 747969.	3.7	7
5	Natural size variation among embryos leads to the corresponding scaling in gene expression. Developmental Biology, 2020, 462, 165-179.	2.0	10
6	Fetal Alcohol Spectrum Disorder: Embryogenesis Under Reduced Retinoic Acid Signaling Conditions. Sub-Cellular Biochemistry, 2020, 95, 197-225.	2.4	13
7	Retinoic acid signaling reduction recapitulates the effects of alcohol on embryo size. Genesis, 2019, 57, e23284.	1.6	13
8	Insights into retinoic acid deficiency and the induction of craniofacial malformations and microcephaly in fetal alcohol spectrum disorder. Genesis, 2019, 57, e23278.	1.6	37
9	Special issue on fetal alcohol spectrum disorder. Biochemistry and Cell Biology, 2018, 96, v-vi.	2.0	0
10	Acetaldehyde inhibits retinoic acid biosynthesis to mediate alcohol teratogenicity. Scientific Reports, 2018, 8, 347.	3.3	51
11	<i>Xenopus</i> embryos to study fetal alcohol syndrome, a model for environmental teratogenesis. Biochemistry and Cell Biology, 2018, 96, 77-87.	2.0	30
12	Competition between ethanol clearance and retinoic acid biosynthesis in the induction of fetal alcohol syndrome. Biochemistry and Cell Biology, 2018, 96, 148-160.	2.0	29
13	ADMP controls the size of Spemann's organizer through a network of self-regulating expansion-restriction signals. BMC Biology, 2018, 16, 13.	3.8	9
14	A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. Scientific Reports, 2017, 7, 43010.	3.3	20
15	Expression of the ALK1 family of type I BMP/ADMP receptors during gastrula stages in Xenopus embryos. International Journal of Developmental Biology, 2017, 61, 465-470.	0.6	6
16	ADHFe1: a novel enzyme involved in retinoic acid-dependent Hox activation. International Journal of Developmental Biology, 2017, 61, 303-310.	0.6	9
17	Roles of the cilium-associated gene CCDC11 in left–right patterning and in laterality disorders in humans. International Journal of Developmental Biology, 2017, 61, 267-276.	0.6	10
18	Kinetic characterization and regulation of the human retinaldehyde dehydrogenase 2 enzyme during production of retinoic acid. Biochemical Journal, 2016, 473, 1423-1431.	3.7	21

#	Article	IF	CITATIONS
19	Xenopus Pkdcc1 and Pkdcc2 Are Two New Tyrosine Kinases Involved in the Regulation of JNK Dependent Wnt/PCP Signaling Pathway. PLoS ONE, 2015, 10, e0135504.	2.5	14
20	Phosphorylation-mediated stabilization of Bora in mitosis coordinates Plx1/Plk1 and Cdk1 oscillations. Cell Cycle, 2014, 13, 1727-1736.	2.6	14
21	Scaling of dorsalâ€ventral patterning in the <i>Xenopus laevis</i> embryo. BioEssays, 2014, 36, 151-156.	2.5	24
22	Cdx1 is essential for the initiation of <i>HoxC8</i> expression during early embryogenesis. FASEB Journal, 2012, 26, 2674-2684.	0.5	9
23	Molecular and Functional Characterizations of Gastrula Organizer Cells Derived from Human Embryonic Stem Cells. Stem Cells, 2011, 29, 600-608.	3.2	32
24	Negative autoregulation of Oct $3/4$ through Cdx1 promotes the onset of gastrulation. Developmental Dynamics, 2011, 240, 796-807.	1.8	9
25	Oct-3/4 regulates stem cell identity and cell fate decisions by modulating Wnt/ \hat{l}^2 -catenin signalling. EMBO Journal, 2010, 29, 3236-3248.	7.8	65
26	Ethanol induces embryonic malformations by competing for retinaldehyde dehydrogenase activity during vertebrate gastrulation. DMM Disease Models and Mechanisms, 2009, 2, 295-305.	2.4	74
27	Reply to Francois et al Nature, 2009, 461, E2-E2.	27.8	0
28	Scaling of the BMP activation gradient in Xenopus embryos. Nature, 2008, 453, 1205-1211.	27.8	220
29	Early molecular effects of ethanol during vertebrate embryogenesis. Differentiation, 2007, 75, 393-403.	1.9	66
30	Ethanol exposure affects gene expression in the embryonic organizer and reduces retinoic acid levels. Developmental Biology, 2005, 279, 193-204.	2.0	109
31	Temporal analysis of the early BMP functions identifies distinct anti-organizer and mesoderm patterning phases. Developmental Biology, 2005, 282, 442-454.	2.0	31
32	Methylation of HoxA5 and HoxB5 and its relevance to expression during mouse development. Gene, 2003, 302, 65-72.	2.2	62
33	The Competence of Marginal Zone Cells to Become Spemann's Organizer Is Controlled by Xcad2. Developmental Biology, 2002, 248, 40-51.	2.0	17
34	Otx2 can activate the isthmic organizer genetic network in the Xenopus embryo. Mechanisms of Development, 2002, 110, 3-13.	1.7	17
35	Gbx2 interacts with Otx2 and patterns the anterior–posterior axis during gastrulation in Xenopus. Mechanisms of Development, 2002, 112, 141-151.	1.7	38
36	The twoXenopus Gbx2genes exhibit similar, but not identical expression patterns and can affect head formation. FEBS Letters, 2001, 507, 205-209.	2.8	17

#	Article	IF	CITATIONS
37	The Xvex-1 antimorph reveals the temporal competence for organizer formation and an early role for ventral homeobox genes. Mechanisms of Development, 2000, 90, 77-87.	1.7	19
38	A role for the homeobox gene Xvex-1 as part of the BMP-4 ventral signaling pathway. Mechanisms of Development, 1999, 86, 99-111.	1.7	21
39	Patterning of the mesoderm involves several threshold responses to BMP-4 and Xwnt-8. Mechanisms of Development, 1999, 87, 33-44.	1.7	47
40	Nested expression and sequential downregulation of the Xenopus caudal genes along the anterior-posterior axis. Mechanisms of Development, 1998, 71, 193-196.	1.7	42
41	The Xcad-2 gene can provide a ventral signal independent of BMP-4. Mechanisms of Development, 1998, 74, 133-143.	1.7	31
42	The chicken caudal genes establish an anterior-posterior gradient by partially overlapping temporal and spatial patterns of expression. Mechanisms of Development, 1997, 64, 41-52.	1.7	89
43	The dorsalizing and neural inducing gene follistatin is an antagonist of BMP-4. Mechanisms of Development, 1997, 63, 39-50.	1.7	344
44	Overexpression of the Homeobox GeneXnot-2Leads to Notochord Formation inXenopus. Developmental Biology, 1996, 174, 174-178.	2.0	50
45	Expression of the novel murine homeobox gene Sax-1 in the developing nervous system. Mechanisms of Development, 1995, 51, 99-114.	1.7	62
46	Isolation and characterization of target sequences of the chickenCdxAhomeobox gene. Nucleic Acids Research, 1993, 21, 4915-4922.	14.5	119
47	CHox E, a chicken homeogene of the H2.0 type exhibits dorso-ventral restriction in the proliferating region of the spinal cord. Mechanisms of Development, 1991, 35, 13-24.	1.7	27
48	Genomic organization and expression during embryogenesis of the chicken CR1 repeat. Genomics, 1991, 10, 931-939.	2.9	10
49	Non-immunological precipitation of protein-DNA complexes using glutathione-S-transferase fusion proteins. Nucleic Acids Research, 1991, 19, 4005-4005.	14.5	10
50	Cloning, characterization, and expression in Escherichia coliof the gene coding for the CpG DNA methylase from Spiroplasma sp. strain MQ1 (M Sssl). Nucleic Acids Research, 1990, 18, 1145-1152.	14.5	215
51	Molecular analysis of the Drosophila nuclear lamin gene. Genomics, 1990, 8, 217-224.	2.9	31
52	The chicken homeo box genes CHox1 and CHox3: cloning, sequencing and expression during embryogenesis. Gene, 1989, 76, 61-74.	2.2	26
53	A chicken homeo box gene with developmentally regulated expression. FEBS Letters, 1989, 250, 381-385.	2.8	36
54	Polypurine/polypyrimidine sequence elements of the murine homeo box loci, Hox-1, -2 and -3. Nucleic Acids Research, 1987, 15, 5495-5495.	14.5	10

#	Article	IF	CITATION
55	Chapter 11 Homeo Box Genes in Murine Development. Current Topics in Developmental Biology, 1987, 23, 233-256.	2.2	54
56	Sequence analysis of the murine Hox-2.2, \hat{a}^2 2.3, and \hat{a}^2 2.4 homeo boxes: Evolutionary and structural comparisons. Genomics, 1987, 1, 182-195.	2.9	101
57	Expression of the murine homeo box gene Hox 1.5 during embryogenesis. Developmental Biology, 1987, 124, 125-133.	2.0	39
58	Analysis of a Chinese hamster temperature-sensitive cell cycle mutant arrested in early S phase. Experimental Cell Research, 1984, 152, 77-90.	2.6	9