
## Ming Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5443149/publications.pdf Version: 2024-02-01



MINC VANC

| #  | Article                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Proteomic Analysis Reveals a Novel Therapeutic Strategy Using Fludarabine for Steroid-Resistant<br>Asthma Exacerbation. Frontiers in Immunology, 2022, 13, 805558.                                                                            | 4.8 | 1         |
| 2  | Dysfunction of S100A4 <sup>+</sup> effector memory CD8 <sup>+</sup> T cells aggravates asthma.<br>European Journal of Immunology, 2022, 52, 978-993.                                                                                          | 2.9 | 3         |
| 3  | Single-cell transcriptomic analysis reveals key immune cell phenotypes in the lungs of patients with asthma exacerbation. Journal of Allergy and Clinical Immunology, 2021, 147, 941-954.                                                     | 2.9 | 30        |
| 4  | miR-122 promotes virus-induced lung disease by targeting SOCS1. JCI Insight, 2021, 6, .                                                                                                                                                       | 5.0 | 17        |
| 5  | miR‑130b regulates PTEN to activate theÂPI3K/Akt signaling pathway and attenuate oxidative<br>stress‑induced injury in diabetic encephalopathy. International Journal of Molecular Medicine, 2021,<br>48, .                                   | 4.0 | 7         |
| 6  | <scp>ILâ€17A</scp> is a common and critical driver of impaired lung function and immunopathology induced by influenza virus, rhinovirus and respiratory syncytial virus. Respirology, 2021, 26, 1049-1059.                                    | 2.3 | 11        |
| 7  | Single-cell transcriptomic analysis reveals the immune landscape of lung in steroid-resistant asthma<br>exacerbation. Proceedings of the National Academy of Sciences of the United States of America, 2021,<br>118, .                        | 7.1 | 42        |
| 8  | Reply to Dutta etÂal.: Understanding scRNA-seq data in the context of the tissue microenvironment<br>requires clinical relevance. Proceedings of the National Academy of Sciences of the United States of<br>America, 2021, 118, e2109159118. | 7.1 | 0         |
| 9  | Lipopolysaccharide induces steroidâ€resistant exacerbations in a mouse model of allergic airway<br>disease collectively through ILâ€I 3 and pulmonary macrophage activation. Clinical and Experimental<br>Allergy, 2020, 50, 82-94.           | 2.9 | 22        |
| 10 | A Critical Role for the CXCL3/CXCL5/CXCR2 Neutrophilic Chemotactic Axis in the Regulation of Type 2<br>Responses in a Model of Rhinoviral-Induced Asthma Exacerbation. Journal of Immunology, 2020, 205,<br>2468-2478.                        | 0.8 | 31        |
| 11 | The DNA methylation of FOXO3 and TP53 as a blood biomarker of late-onset asthma. Journal of Translational Medicine, 2020, 18, 467.                                                                                                            | 4.4 | 13        |
| 12 | DNA methylation downâ€regulates integrin β4 expression in asthmatic airway epithelial cells. Clinical and Experimental Allergy, 2020, 50, 1127-1139.                                                                                          | 2.9 | 6         |
| 13 | GSTO1â€l is an upstream suppressor of M2 macrophage skewing and HIFâ€lαâ€induced eosinophilic airway inflammation. Clinical and Experimental Allergy, 2020, 50, 609-624.                                                                      | 2.9 | 17        |
| 14 | Airway epithelial integrin β4 suppresses allergic inflammation by decreasing CCL17 production. Clinical Science, 2020, 134, 1735-1749.                                                                                                        | 4.3 | 13        |
| 15 | A Selective α7 Nicotinic Acetylcholine Receptor Agonist, PNU-282987, Attenuates ILC2s Activation and Alternaria-Induced Airway Inflammation. Frontiers in Immunology, 2020, 11, 598165.                                                       | 4.8 | 15        |
| 16 | <i>ITGB4</i> is essential for containing HDM-induced airway inflammation and airway hyperresponsiveness. Journal of Leukocyte Biology, 2018, 103, 897-908.                                                                                    | 3.3 | 23        |
| 17 | Identification of IFN-γ and IL-27 as Critical Regulators of Respiratory Syncytial Virus–Induced<br>Exacerbation of Allergic Airways Disease in a Mouse Model. Journal of Immunology, 2018, 200, 237-247.                                      | 0.8 | 24        |
| 18 | Mouse models of severe asthma: <scp>U</scp> nderstanding the mechanisms of steroid resistance, tissue remodelling and disease exacerbation. Respirology, 2017, 22, 874-885.                                                                   | 2.3 | 54        |

Ming Yang

| #  | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Modeling <scp>T<sub>H</sub></scp> 2 responses and airway inflammation to understand fundamental mechanisms regulating the pathogenesis of asthma. Immunological Reviews, 2017, 278, 20-40.                                | 6.0 | 107       |
| 20 | Bromodomain and Extra Terminal (BET) Inhibitor Suppresses Macrophage-Driven Steroid-Resistant<br>Exacerbations of Airway Hyper-Responsiveness and Inflammation. PLoS ONE, 2016, 11, e0163392.                             | 2.5 | 23        |
| 21 | TNF-α and Macrophages Are Critical for Respiratory Syncytial Virus–Induced Exacerbations in a Mouse<br>Model of Allergic Airways Disease. Journal of Immunology, 2016, 196, 3547-3558.                                    | 0.8 | 52        |
| 22 | MicroRNA-487b Is a Negative Regulator of Macrophage Activation by Targeting IL-33 Production.<br>Journal of Immunology, 2016, 196, 3421-3428.                                                                             | 0.8 | 36        |
| 23 | Identification of the microRNA networks contributing to macrophage differentiation and function.<br>Oncotarget, 2016, 7, 28806-28820.                                                                                     | 1.8 | 13        |
| 24 | Antagonism of miR-328 Increases the Antimicrobial Function of Macrophages and Neutrophils and<br>Rapid Clearance of Non-typeable Haemophilus Influenzae (NTHi) from Infected Lung. PLoS Pathogens,<br>2015, 11, e1004549. | 4.7 | 62        |
| 25 | MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase<br>2A activity. Journal of Allergy and Clinical Immunology, 2015, 136, 462-473.                                         | 2.9 | 84        |
| 26 | Identification of MicroRNAs Regulating the Developmental Pathways of Bone Marrow Derived Mast<br>Cells. PLoS ONE, 2014, 9, e98139.                                                                                        | 2.5 | 16        |
| 27 | Expression Profiling of Differentiating Eosinophils in Bone Marrow Cultures Predicts Functional Links between MicroRNAs and Their Target mRNAs. PLoS ONE, 2014, 9, e97537.                                                | 2.5 | 17        |
| 28 | The emerging role of micro <scp>RNA</scp> s in regulating immune and inflammatory responses in the lung. Immunological Reviews, 2013, 253, 198-215.                                                                       | 6.0 | 97        |
| 29 | Th2 cytokine antagonists: potential treatments for severe asthma. Expert Opinion on Investigational<br>Drugs, 2013, 22, 49-69.                                                                                            | 4.1 | 76        |
| 30 | Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte<br>Chemotactic Protein-1 Production. PLoS ONE, 2013, 8, e80148.                                                                        | 2.5 | 32        |
| 31 | Preventive effect of N-acetylcysteine in a mouse model of steroid resistant acute exacerbation of asthma. EXCLI Journal, 2013, 12, 184-92.                                                                                | 0.7 | 18        |
| 32 | Emerging roles of pulmonary macrophages in driving the development of severe asthma. Journal of<br>Leukocyte Biology, 2012, 91, 557-569.                                                                                  | 3.3 | 87        |
| 33 | Interferon-γ , Pulmonary Macrophages and Airway Responsiveness in Asthma. Inflammation and Allergy: Drug Targets, 2012, 11, 292-297.                                                                                      | 1.8 | 26        |
| 34 | Potential Therapeutic Targets for Steroid-Resistant Asthma. Current Drug Targets, 2010, 11, 957-970.                                                                                                                      | 2.1 | 66        |
| 35 | IL-27/IFN-γ Induce MyD88-Dependent Steroid-Resistant Airway Hyperresponsiveness by Inhibiting<br>Glucocorticoid Signaling in Macrophages. Journal of Immunology, 2010, 185, 4401-4409.                                    | 0.8 | 109       |
| 36 | Pathogenesis of Steroid-Resistant Airway Hyperresponsiveness: Interaction between IFN-γ and<br>TLR4/MyD88 Pathways. Journal of Immunology, 2009, 182, 5107-5115.                                                          | 0.8 | 78        |

Ming Yang

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Discovery, biology and therapeutic potential of RNA interference, microRNA and antagomirs. , 2008, 117, 94-104.                                                                                                                                                  |     | 84        |
| 38 | Employment of microRNA profiles and RNA interference and antagomirs for the characterization and treatment of respiratory disease. Drug Discovery Today: Therapeutic Strategies, 2006, 3, 325-332.                                                               | 0.5 | 2         |
| 39 | Inhibition of Arginase I Activity by RNA Interference Attenuates IL-13-Induced Airways<br>Hyperresponsiveness. Journal of Immunology, 2006, 177, 5595-5603.                                                                                                      | 0.8 | 94        |
| 40 | Eotaxin-2 and IL-5 cooperate in the lung to regulate IL-13 production and airway eosinophilia and hyperreactivity. Journal of Allergy and Clinical Immunology, 2003, 112, 935-943.                                                                               | 2.9 | 106       |
| 41 | Intrinsic Defect in T Cell Production of Interleukin (IL)-13 in the Absence of Both IL-5 and Eotaxin<br>Precludes the Development of Eosinophilia and Airways Hyperreactivity in Experimental Asthma.<br>Journal of Experimental Medicine, 2002, 195, 1433-1444. | 8.5 | 250       |
| 42 | Elemental signals regulating eosinophil accumulation in the lung. Immunological Reviews, 2001, 179, 173-181.                                                                                                                                                     | 6.0 | 207       |
| 43 | Interleukin-13 Mediates Airways Hyperreactivity through the IL-4 Receptor-Alpha Chain and STAT-6<br>Independently of IL-5 and Eotaxin. American Journal of Respiratory Cell and Molecular Biology, 2001,                                                         | 2.9 | 144       |