Edward M Callaway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5442514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secondary auditory cortex mediates a sensorimotor mechanism for action timing. Nature Neuroscience, 2022, 25, 330-344.	7.1	5
2	Single-cell transcriptomic classification of rabies-infected cortical neurons. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	19
3	Targeting thalamic circuits rescues motor and mood deficits in PD mice. Nature, 2022, 607, 321-329.	13.7	32
4	Application of Recombinant Rabies Virus to <i>Xenopus</i> Tadpole Brain. ENeuro, 2021, 8, ENEURO.0477-20.2021.	0.9	6
5	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	13.7	316
6	Distinct "driving―versus "modulatory―influences of different visual corticothalamic pathways. Current Biology, 2021, 31, 5121-5137.e7.	1.8	19
7	DNA methylation atlas of the mouse brain at single-cell resolution. Nature, 2021, 598, 120-128.	13.7	135
8	Epigenomic diversity of cortical projection neurons in the mouse brain. Nature, 2021, 598, 167-173.	13.7	47
9	A systematic topographical relationship between mouse lateral posterior thalamic neurons and their visual cortical projection targets. Journal of Comparative Neurology, 2020, 528, 99-111.	0.9	24
10	Monosynaptic Projections to Excitatory and Inhibitory preBötzinger Complex Neurons. Frontiers in Neuroanatomy, 2020, 14, 58.	0.9	74
11	Extraction of Distinct Neuronal Cell Types from within a Genetically Continuous Population. Neuron, 2020, 107, 274-282.e6.	3.8	88
12	Context-dependent and dynamic functional influence of corticothalamic pathways to first- and higher-order visual thalamus. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 13066-13077.	3.3	49
13	Color and orientation are jointly coded and spatially organized in primate primary visual cortex. Science, 2019, 364, 1275-1279.	6.0	100
14	Mapping Brain-Wide Afferent Inputs of Parvalbumin-Expressing GABAergic Neurons in Barrel Cortex Reveals Local and Long-Range Circuit Motifs. Cell Reports, 2019, 28, 3450-3461.e8.	2.9	52
15	Intersectional monosynaptic tracing for dissecting subtype-specific organization of GABAergic interneuron inputs. Nature Neuroscience, 2019, 22, 492-502.	7.1	39
16	Local and Global Influences of Visual Spatial Selection and Locomotion in Mouse Primary Visual Cortex. Current Biology, 2019, 29, 1592-1605.e5.	1.8	27
17	Higher-Order Thalamic Circuits Channel Parallel Streams of Visual Information in Mice. Neuron, 2019, 102, 477-492.e5.	3.8	133
18	Sources of off-target expression from recombinase-dependent AAV vectors and mitigation with cross-over insensitive ATC-out vectors. Proceedings of the National Academy of Sciences of the United States of America. 2019. 116. 27001-27010.	3.3	50

#	Article	IF	CITATIONS
19	Molecular Fingerprinting of On–Off Direction-Selective Retinal Ganglion Cells Across Species and Relevance to Primate Visual Circuits. Journal of Neuroscience, 2019, 39, 78-95.	1.7	44
20	Genetic Dissection of Neural Circuits: A Decade of Progress. Neuron, 2018, 98, 256-281.	3.8	374
21	Centrifugal Inputs to the Main Olfactory Bulb Revealed Through Whole Brain Circuit-Mapping. Frontiers in Neuroanatomy, 2018, 12, 115.	0.9	39
22	Automated identification of mouse visual areas with intrinsic signal imaging. Nature Protocols, 2017, 12, 32-43.	5.5	84
23	Cell Type-Specific Control of Spike Timing by Gamma-Band Oscillatory Inhibition. Cerebral Cortex, 2016, 26, bhv044.	1.6	18
24	Morphological Substrates for Parallel Streams of Corticogeniculate Feedback Originating in Both V1 and V2 of the Macaque Monkey. Neuron, 2016, 90, 388-399.	3.8	52
25	Brain-Wide Maps of Synaptic Input to Cortical Interneurons. Journal of Neuroscience, 2016, 36, 4000-4009.	1.7	143
26	Comment on "Principles of connectivity among morphologically defined cell types in adult neocortex― Science, 2016, 353, 1108-1108.	6.0	24
27	Distributed and Mixed Information in Monosynaptic Inputs to Dopamine Neurons. Neuron, 2016, 91, 1374-1389.	3.8	195
28	Diverse Representations of Olfactory Information in Centrifugal Feedback Projections. Journal of Neuroscience, 2016, 36, 7535-7545.	1.7	39
29	Efficient Receptive Field Tiling in Primate V1. Neuron, 2016, 91, 893-904.	3.8	63
30	Genetic-Based Dissection Unveils the Inputs and Outputs of Striatal Patch and Matrix Compartments. Neuron, 2016, 91, 1069-1084.	3.8	133
31	In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016, 540, 144-149.	13.7	906
32	Distinct Hippocampal Pathways Mediate Dissociable Roles of Context in Memory Retrieval. Cell, 2016, 167, 961-972.e16.	13.5	226
33	A viral strategy for targeting and manipulating interneurons across vertebrate species. Nature Neuroscience, 2016, 19, 1743-1749.	7.1	396
34	Afferent Inputs to Neurotransmitter-Defined Cell Types in the Ventral Tegmental Area. Cell Reports, 2016, 15, 2796-2808.	2.9	145
35	Improved Monosynaptic Neural Circuit Tracing Using Engineered Rabies Virus Glycoproteins. Cell Reports, 2016, 15, 692-699.	2.9	203
36	Functional Local Input to Layer 5 Pyramidal Neurons in the Rat Visual Cortex. Cerebral Cortex, 2016, 26, 991-1003.	1.6	13

#	Article	IF	CITATIONS
37	Early Somatostatin Interneuron Connectivity Mediates the Maturation of Deep Layer Cortical Circuits. Neuron, 2016, 89, 521-535.	3.8	154
38	Inhibitory Cell Types, Circuits and Receptive Fields in Mouse Visual Cortex. Research and Perspectives in Neurosciences, 2016, , 11-18.	0.4	8
39	Pattern and Component Motion Responses in Mouse Visual Cortical Areas. Current Biology, 2015, 25, 1759-1764.	1.8	88
40	Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function. Neuron, 2015, 88, 1253-1267.	3.8	273
41	Monosynaptic Circuit Tracing with Glycoprotein-Deleted Rabies Viruses. Journal of Neuroscience, 2015, 35, 8979-8985.	1.7	355
42	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	3.8	231
43	Anatomical Identification of Extracellularly Recorded Cells in Large-Scale Multielectrode Recordings. Journal of Neuroscience, 2015, 35, 4663-4675.	1.7	63
44	Topography and Areal Organization of Mouse Visual Cortex. Journal of Neuroscience, 2014, 34, 12587-12600.	1.7	295
45	Characterization of Long Descending Premotor Propriospinal Neurons in the Spinal Cord. Journal of Neuroscience, 2014, 34, 9404-9417.	1.7	51
46	A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature, 2014, 507, 358-361.	13.7	279
47	Cell-Type-Specific Circuit Connectivity of Hippocampal CA1 Revealed through Cre-Dependent Rabies Tracing. Cell Reports, 2014, 7, 269-280.	2.9	184
48	Optical control of retrogradely infected neurons using drug-regulated "TLoop―lentiviral vectors. Journal of Neurophysiology, 2014, 111, 2150-2159.	0.9	24
49	Differential Innervation of Direct- and Indirect-Pathway Striatal Projection Neurons. Neuron, 2013, 79, 347-360.	3.8	408
50	Design and generation of recombinant rabies virus vectors. Nature Protocols, 2013, 8, 1583-1601.	5.5	257
51	Contrast Dependence and Differential Contributions from Somatostatin- and Parvalbumin-Expressing Neurons to Spatial Integration in Mouse V1. Journal of Neuroscience, 2013, 33, 11145-11154.	1.7	74
52	Optogenetics through windows on the brain in the nonhuman primate. Journal of Neurophysiology, 2013, 110, 1455-1467.	0.9	103
53	Imaging light responses of retinal ganglion cells in the living mouse eye. Journal of Neurophysiology, 2013, 109, 2415-2421.	0.9	61
54	A precise and minimally invasive approach to optogenetics in the awake primate. Proceedings of SPIE, 2013, , .	0.8	0

#	Article	IF	CITATIONS
55	Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9106-9111.	3.3	73
56	Optical recording of the light response of ganglion cells in the living eye. , 2013, , .		0
57	Development of GABAergic inputs controls the contribution of maturing neurons to the adult hippocampal network. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4290-4295.	3.3	53
58	New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits. Neuron, 2012, 74, 206.	3.8	0
59	Nonlinearity of two-photon Ca ²⁺ imaging yields distorted measurements of tuning for V1 neuronal populations. Journal of Neurophysiology, 2012, 107, 923-936.	0.9	36
60	Monosynaptic inputs to new neurons in the dentate gyrus. Nature Communications, 2012, 3, 1107.	5.8	244
61	Common features of diverse circuits. Current Opinion in Neurobiology, 2012, 22, 565-567.	2.0	5
62	Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex. Nature Neuroscience, 2012, 15, 1683-1690.	7.1	141
63	Anterior-Posterior Direction Opponency in the Superficial Mouse Lateral Geniculate Nucleus. Neuron, 2012, 76, 713-720.	3.8	152
64	Viral vector-based reversible neuronal inactivation and behavioral manipulation in the macaque monkey. Frontiers in Systems Neuroscience, 2012, 6, 48.	1.2	9
65	Morphology of superior colliculus―and middle temporal areaâ€projecting neurons in primate primary visual cortex. Journal of Comparative Neurology, 2012, 520, 52-80.	0.9	31
66	New Rabies Virus Variants for Monitoring and Manipulating Activity and Gene Expression in Defined Neural Circuits. Neuron, 2011, 71, 617-631.	3.8	296
67	Functional Specialization of Seven Mouse Visual Cortical Areas. Neuron, 2011, 72, 1040-1054.	3.8	422
68	Cortical representations of olfactory input by trans-synaptic tracing. Nature, 2011, 472, 191-196.	13.7	478
69	Monosynaptic inputs to ErbB4â€expressing inhibitory neurons in mouse primary somatosensory cortex. Journal of Comparative Neurology, 2011, 519, 3402-3414.	0.9	15
70	Developmental Sculpting of Dendritic Morphology of Layer 4 Neurons in Visual Cortex: Influence of Retinal Input. Journal of Neuroscience, 2011, 31, 7456-7470.	1.7	86
71	Immunochemical characterization of inhibitory mouse cortical neurons: Three chemically distinct classes of inhibitory cells. Journal of Comparative Neurology, 2010, 518, 389-404.	0.9	373
72	Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature, 2010, 468, 270-276.	13.7	745

#	Article	IF	CITATIONS
73	Two-Photon Imaging of Calcium in Virally Transfected Striate Cortical Neurons of Behaving Monkey. PLoS ONE, 2010, 5, e13829.	1.1	50
74	Metabolic cost as a unifying principle governing neuronal biophysics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12329-12334.	3.3	212
75	Selective viral vector transduction of ErbB4 expressing cortical interneurons in vivo with a viral receptor–ligand bridge protein. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16703-16708.	3.3	35
76	Cell Type-Specific Control of Neuronal Responsiveness by Gamma-Band Oscillatory Inhibition. Journal of Neuroscience, 2010, 30, 2150-2159.	1.7	37
77	Transgenic Targeting of Recombinant Rabies Virus Reveals Monosynaptic Connectivity of Specific Neurons. Journal of Neuroscience, 2010, 30, 16509-16513.	1.7	63
78	Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21848-21853.	3.3	332
79	A Disynaptic Relay from Superior Colliculus to Dorsal Stream Visual Cortex in Macaque Monkey. Neuron, 2010, 65, 270-279.	3.8	203
80	Targeting Single Neuronal Networks for Gene Expression and Cell Labeling In Vivo. Neuron, 2010, 67, 562-574.	3.8	196
81	Paint It Black (or Red, or Green): Optical and Genetic Tools Illuminate Inhibitory Contributions to Cortical Circuit Function. Neuron, 2010, 67, 681-684.	3.8	7
82	Short promoters in viral vectors drive selective expression in mammalian inhibitory neurons, but do not restrict activity to specific inhibitory cell-types. Frontiers in Neural Circuits, 2009, 3, 19.	1.4	95
83	Laminar Specificity of Functional Input to Distinct Types of Inhibitory Cortical Neurons. Journal of Neuroscience, 2009, 29, 70-85.	1.7	203
84	Transgenic Silencing of Neurons in the Mammalian Brain by Expression of the Allatostatin Receptor (AlstR). Journal of Neurophysiology, 2009, 102, 2554-2562.	0.9	32
85	Parallel processing strategies of the primate visual system. Nature Reviews Neuroscience, 2009, 10, 360-372.	4.9	627
86	Preferential labeling of inhibitory and excitatory cortical neurons by endogenous tropism of adeno-associated virus and lentivirus vectors. Neuroscience, 2009, 161, 441-450.	1.1	247
87	Silencing preBötzinger Complex somatostatin-expressing neurons induces persistent apnea in awake rat. Nature Neuroscience, 2008, 11, 538-540.	7.1	279
88	More than a feeling: sensation from cortical stimulation. Nature Neuroscience, 2008, 11, 10-11.	7.1	6
89	Transneuronal circuit tracing with neurotropic viruses. Current Opinion in Neurobiology, 2008, 18, 617-623.	2.0	232
90	Genetic Dissection of Neural Circuits. Neuron, 2008, 57, 634-660.	3.8	714

#	Article	IF	CITATIONS
91	Excitatory Local Connections of Superficial Neurons in Rat Auditory Cortex. Journal of Neuroscience, 2008, 28, 11174-11185.	1.7	89
92	Retrograde tracing with recombinant rabies virus reveals correlations between projection targets and dendritic architecture in layer 5 of mouse barrel cortex. Frontiers in Neural Circuits, 2008, 1, 5.	1.4	72
93	Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons. Neuron, 2007, 53, 639-647.	3.8	1,080
94	Specialized Circuits from Primary Visual Cortex to V2 and Area MT. Neuron, 2007, 55, 799-808.	3.8	64
95	Suitability of hCMV for viral gene expression in the brain. Nature Methods, 2007, 4, 379-379.	9.0	3
96	Retrograde neuronal tracing with a deletion-mutant rabies virus. Nature Methods, 2007, 4, 47-49.	9.0	606
97	Should I Stay or Should I Go? Presynaptic Boutons in the Adult Cortex Still Haven't Made Up Their Minds. Neuron, 2006, 49, 780-783.	3.8	4
98	The Parvocellular LGN Provides a Robust Disynaptic Input to the Visual Motion Area MT. Neuron, 2006, 50, 319-327.	3.8	119
99	Selective and Quickly Reversible Inactivation of Mammalian Neurons In Vivo Using the Drosophila Allatostatin Receptor. Neuron, 2006, 51, 157-170.	3.8	127
100	Local Connections to Specific Types of Layer 6 Neurons in the Rat Visual Cortex. Journal of Neurophysiology, 2006, 95, 1751-1761.	0.9	81
101	Visual Spatial Summation in Macaque Geniculocortical Afferents. Journal of Neurophysiology, 2006, 96, 3474-3484.	0.9	50
102	V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature, 2006, 440, 215-219.	13.7	348
103	New technologies. Current Opinion in Neurobiology, 2006, 16, 540-542.	2.0	3
104	Development of layer-specific axonal arborizations in mouse primary somatosensory cortex. Journal of Comparative Neurology, 2006, 494, 398-414.	0.9	87
105	Mouse cortical inhibitory neuron type that coexpresses somatostatin and calretinin. Journal of Comparative Neurology, 2006, 499, 144-160.	0.9	165
106	In vivo Evidence for Radial Migration of Neurons by Long-Distance Somal Translocation in the Developing Ferret Visual Cortex. Cerebral Cortex, 2006, 16, 1571-1583.	1.6	38
107	Multiple Circuits Relaying Primate Parallel Visual Pathways to the Middle Temporal Area. Journal of Neuroscience, 2006, 26, 12789-12798.	1.7	83
108	Targeted gene delivery to telencephalic inhibitory neurons by directional in utero electroporation. Journal of Neuroscience Methods, 2005, 143, 151-158.	1.3	115

#	Article	IF	CITATIONS
109	Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nature Neuroscience, 2005, 8, 1552-1559.	7.1	348
110	Structure and function of parallel pathways in the primate early visual system. Journal of Physiology, 2005, 566, 13-19.	1.3	168
111	Excitatory cortical neurons form fine-scale functional networks. Nature, 2005, 433, 868-873.	13.7	553
112	Redefining the boundaries of the hippocampal CA2 subfield in the mouse using gene expression and 3-dimensional reconstruction. Journal of Comparative Neurology, 2005, 485, 1-10.	0.9	134
113	Neural substrates within primary visual cortex for interactions between parallel visual pathways. Progress in Brain Research, 2005, 149, 59-64.	0.9	21
114	Laminar Patterns of Local Excitatory Input to Layer 5 Neurons in Macaque Primary Visual Cortex. Cerebral Cortex, 2005, 15, 479-488.	1.6	40
115	A molecular and genetic arsenal for systems neuroscience. Trends in Neurosciences, 2005, 28, 196-201.	4.2	86
116	Topographic specificity of functional connections from hippocampal CA3 to CA1. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2560-2565.	3.3	43
117	Francis Crick's Legacy for Neuroscience: Between the \hat{I}_{\pm} and the \hat{I}_{\odot} . PLoS Biology, 2004, 2, e419.	2.6	7
118	Antisense inhibition of reward learning. Nature Neuroscience, 2004, 7, 1023-1024.	7.1	0
119	Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Networks, 2004, 17, 625-632.	3.3	137
120	Close Encounters. Neuron, 2004, 43, 156-158.	3.8	4
121	Parallel colour-opponent pathways to primary visual cortex. Nature, 2003, 426, 668-671.	13.7	211
122	S Cone Contributions to the Magnocellular Visual Pathway in Macaque Monkey. Neuron, 2002, 35, 1135-1146.	3.8	96
123	Orientation Tuning—A Crooked Path to the Straight and Narrow. Neuron, 2002, 36, 783-785.	3.8	0
124	Reorganization of Exuberant Axonal Arbors Contributes to the Development of Laminar Specificity in Ferret Visual Cortex. Journal of Neuroscience, 2002, 22, 6682-6695.	1.7	37
125	A Genetic Method for Selective and Quickly Reversible Silencing of Mammalian Neurons. Journal of Neuroscience, 2002, 22, 5287-5290.	1.7	143
126	Stimulating neurons with light. Current Opinion in Neurobiology, 2002, 12, 587-592.	2.0	121

#	Article	IF	CITATIONS
127	Cell type specificity of local cortical connections. Journal of Neurocytology, 2002, 31, 231-237.	1.6	50
128	Neural Mechanisms for the Generation of Visual Complex Cells. Neuron, 2001, 32, 378-380.	3.8	10
129	Layer-Specific Input to Distinct Cell Types in Layer 6 of Monkey Primary Visual Cortex. Journal of Neuroscience, 2001, 21, 3600-3608.	1.7	88
130	Development of visual cortical axons: Layer-specific effects of extrinsic influences and activity blockade. Journal of Comparative Neurology, 2001, 430, 321-331.	0.9	18
131	Two Functional Channels from Primary Visual Cortex to Dorsal Visual Cortical Areas. Science, 2001, 292, 297-300.	6.0	144
132	Laminar sources of synaptic input to cortical inhibitory interneurons and pyramidal neurons. Nature Neuroscience, 2000, 3, 701-707.	7.1	300
133	Laminar Specificity of Local Circuits in Barrel Cortex of Ephrin-A5 Knockout Mice. Journal of Neuroscience, 2000, 20, RC88-RC88.	1.7	16
134	Diversity and Cell Type Specificity of Local Excitatory Connections to Neurons in Layer 3B of Monkey Primary Visual Cortex. Neuron, 2000, 25, 459-471.	3.8	72
135	Brominated 7-hydroxycoumarin-4-ylmethyls: Photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1193-1200.	3.3	592
136	LOCAL CIRCUITS IN PRIMARY VISUAL CORTEX OF THE MACAQUE MONKEY. Annual Review of Neuroscience, 1998, 21, 47-74.	5.0	525
137	Visual scenes and cortical neurons: What you see is what you get. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 3344-3345.	3.3	3
138	Cytochrome-oxidase blobs and intrinsic horizontal connections of layer 2/3 pyramidal neurons in primate V1. Visual Neuroscience, 1998, 15, 1007-1027.	0.5	60
139	The Development of Local, Layer-Specific Visual Cortical Axons in the Absence of Extrinsic Influences and Intrinsic Activity. Journal of Neuroscience, 1998, 18, 4145-4154.	1.7	81
140	Functional Streams and Local Connections of Layer 4C Neurons in Primary Visual Cortex of the Macaque Monkey. Journal of Neuroscience, 1998, 18, 9489-9499.	1.7	110
141	Prenatal Development of Layer-Specific Local Circuits in Primary Visual Cortex of the Macaque Monkey. Journal of Neuroscience, 1998, 18, 1505-1527.	1.7	47
142	Ocular dominance columns and local projections of layer 6 pyramidal neurons in macaque primary visual cortex. Visual Neuroscience, 1997, 14, 241-251.	0.5	21
143	Development of axonal arbors of layer 6 pyramidal neurons in ferret primary visual cortex. Journal of Comparative Neurology, 1996, 376, 295-305.	0.9	29
144	Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex. Nature, 1996, 380, 442-446.	13.7	139

#	Article	IF	CITATIONS
145	Contributions of individual layer 2–5 spiny neurons to local circuits in macaque primary visual cortex. Visual Neuroscience, 1996, 13, 907-922.	0.5	104
146	Caged Neurotransmitters: Shedding light on neural circuits. Current Biology, 1994, 4, 1010-1012.	1.8	8
147	Photostimulation using caged glutamate reveals functional circuitry in living brain slices Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 7661-7665.	3.3	370
148	Effects of binocular deprivation on the development of clustered horizontal connections in cat striate cortex Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 745-749.	3.3	183
149	Emergence and refinement of clustered horizontal connections in cat striate cortex. Journal of Neuroscience, 1990, 10, 1134-1153.	1.7	334
150	Slowing of synapse elimination by α-bungarotoxin superfusion of the neonatal rabbit soleus muscle. Developmental Biology, 1989, 131, 356-365.	0.9	21
151	Lack of fiber type selectivity during reinnervation of neonatal rabbit soleus muscle. Developmental Biology, 1989, 131, 401-414.	0.9	9
152	Competitive elimination of neuromuscular synapses. Nature, 1988, 331, 21-22.	13.7	8
153	Competition favouring inactive over active motor neurons during synapse elimination. Nature, 1987, 328, 422-426.	13.7	89