
Sagar Sengupta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441895/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bile Acid Tethered Docetaxelâ€Based Nanomicelles Mitigate Tumor Progression through Epigenetic Changes. Angewandte Chemie - International Edition, 2021, 60, 5394-5399.	13.8	13
2	Bile Acid Tethered Docetaxelâ€Based Nanomicelles Mitigate Tumor Progression through Epigenetic Changes. Angewandte Chemie, 2021, 133, 5454-5459.	2.0	0
3	Self-assembled supramolecular nanomicelles from a bile acid–docetaxel conjugate are highly tolerable with improved therapeutic efficacy. Biomaterials Science, 2021, 9, 5626-5639.	5.4	4
4	Functions of BLM Helicase in Cells: Is It Acting Like a Double-Edged Sword?. Frontiers in Genetics, 2021, 12, 634789.	2.3	41
5	MITOL-dependent ubiquitylation negatively regulates the entry of PolÎ ³ A into mitochondria. PLoS Biology, 2021, 19, e3001139.	5.6	14
6	CDX2 inducible microRNAs sustain colon cancer by targeting multiple DNA damage response pathway factors. Journal of Cell Science, 2021, 134, .	2.0	4
7	Identification of colorectal cancers with defective DNA damage repair by immunohistochemical profiling of mismatch repair proteins, CDX2 and BRCA1. Molecular and Clinical Oncology, 2020, 13, 1-1.	1.0	5
8	Mycobacterium tuberculosis exploits host ATM kinase for survival advantage through SecA2 secretome. ELife, 2020, 9, .	6.0	10
9	Abrogation of FBW7α-dependent p53 degradation enhances p53's function as a tumor suppressor. Journal of Biological Chemistry, 2019, 294, 13224-13232.	3.4	22
10	A Localized Chimeric Hydrogel Therapy Combats Tumor Progression through Alteration of Sphingolipid Metabolism. ACS Central Science, 2019, 5, 1648-1662.	11.3	32
11	MRN complex-dependent recruitment of ubiquitylated BLM helicase to DSBs negatively regulates DNA repair pathways. Nature Communications, 2018, 9, 1016.	12.8	54
12	BLM Potentiates c-Jun Degradation and Alters Its Function as an Oncogenic Transcription Factor. Cell Reports, 2018, 24, 947-961.e7.	6.4	19
13	Tethering of Chemotherapeutic Drug/Imaging Agent to Bile Acid-Phospholipid Increases the Efficacy and Bioavailability with Reduced Hepatotoxicity. Bioconjugate Chemistry, 2017, 28, 2942-2953.	3.6	16
14	Molecular Self-Assembly of Bile Acid-Phospholipids Controls the Delivery of Doxorubicin and Mice Survivability. Molecular Pharmaceutics, 2017, 14, 2649-2659.	4.6	7
15	Mitotic phosphorylation of Bloom helicase at Thr182 is required for its proteasomal degradation and maintenance of chromosomal stability. Oncogene, 2016, 35, 1025-1038.	5.9	19
16	Mitochondrial functions of RECQL4 are required for the prevention of aerobic glycolysis dependent cell invasion. Journal of Cell Science, 2016, 129, 1312-8.	2.0	13
17	CPT-11/bevacizumab for the treatment of refractory brain metastases in patients with HER2-neu-positive breast cancer. Oxford Medical Case Reports, 2015, 2015, 254-257.	0.4	6
18	Synthesis, structure–activity relationship, and mechanistic investigation of lithocholic acidamphiphiles for colon cancer therapy. MedChemComm, 2015, 6, 192-201	3.4	25

SAGAR SENGUPTA

#	Article	IF	CITATIONS
19	Phosphorylation of nucleoporin Tpr governs its differential localization and is required for its mitotic function. Journal of Cell Science, 2014, 127, 3505-3520.	2.0	29
20	RECQL4 and p53 potentiate the activity of polymerase \hat{I}^3 and maintain the integrity of the human mitochondrial genome. Carcinogenesis, 2014, 35, 34-45.	2.8	55
21	Injectable small molecule hydrogel as a potential nanocarrier for localized and sustained in vivo delivery of doxorubicin. Nanoscale, 2014, 6, 12849-12855.	5.6	75
22	Design, Synthesis, and Mechanistic Investigations of Bile Acid–Tamoxifen Conjugates for Breast Cancer Therapy. Bioconjugate Chemistry, 2013, 24, 1468-1484.	3.6	42
23	Ubiquitin-dependent recruitment of the Bloom Syndrome helicase upon replication stress is required to suppress homologous recombination. EMBO Journal, 2013, 32, 1778-1792.	7.8	46
24	Inositol Pyrophosphate Synthesis by Inositol Hexakisphosphate Kinase 1 Is Required for Homologous Recombination Repair. Journal of Biological Chemistry, 2013, 288, 3312-3321.	3.4	42
25	Inertial Focusing for Tumor Antigen–Dependent and –Independent Sorting of Rare Circulating Tumor Cells. Science Translational Medicine, 2013, 5, 179ra47.	12.4	910
26	Enhancement of c-Myc degradation by Bloom (BLM) helicase leads to delayed tumor initiation. Journal of Cell Science, 2013, 126, 3782-95.	2.0	21
27	Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11294-11299.	7.1	121
28	RECQL4 is essential for the transport of p53 to mitochondria in normal human cells in the absence of exogenous stress. Journal of Cell Science, 2012, 125, 2509-22.	2.0	88
29	Mammalian proapoptotic factor ChaC1 and its homologues function as γâ€glutamyl cyclotransferases acting specifically on glutathione. EMBO Reports, 2012, 13, 1095-1101.	4.5	164
30	Time to Bloom. Genome Integrity, 2010, 1, 14.	1.0	31
31	Chk1-Dependent Constitutive Phosphorylation of BLM Helicase at Serine 646 Decreases after DNA Damage. Molecular Cancer Research, 2010, 8, 1234-1247.	3.4	22
32	Nanoparticle-mediated targeting of MAPK signaling predisposes tumor to chemotherapy. Proceedings of the United States of America, 2009, 106, 7957-7961.	7.1	116
33	BLM helicase stimulates the ATPase and chromatin-remodeling activities of RAD54. Journal of Cell Science, 2009, 122, 3093-3103.	2.0	30
34	The Med8 mediator subunit interacts with the Rpb4 subunit of RNA polymerase II and Ace2 transcriptional activator in <i>Schizosaccharomyces pombe</i> . FEBS Letters, 2009, 583, 3115-3120.	2.8	14
35	ING2 controls the progression of DNA replication forks to maintain genome stability. EMBO Reports, 2009, 10, 1168-1174.	4.5	33
36	BLM helicase–dependent and –independent roles of 53BP1 during replication stress–mediated homologous recombination. Journal of Cell Biology, 2007, 178, 9-14.	5.2	47

SAGAR SENGUPTA

#	Article	IF	CITATIONS
37	Phosphorylation-dependent interactions of BLM and 53BP1 are required for their anti-recombinogenic roles during homologous recombination. Carcinogenesis, 2007, 29, 52-61.	2.8	37
38	p53: traffic cop at the crossroads of DNA repair and recombination. Nature Reviews Molecular Cell Biology, 2005, 6, 44-55.	37.0	478
39	Tumor suppressor p53 represses transcription of RECQ4 helicase. Oncogene, 2005, 24, 1738-1748.	5.9	75
40	BLM Helicase Facilitates Mus81 Endonuclease Activity in Human Cells. Cancer Research, 2005, 65, 2526-2531.	0.9	47
41	ING2 Regulates the Onset of Replicative Senescence by Induction of p300-Dependent p53 Acetylation. Molecular and Cellular Biology, 2005, 25, 6639-6648.	2.3	116
42	Functional interaction between BLM helicase and 53BP1 in a Chk1-mediated pathway during S-phase arrest. Journal of Cell Biology, 2004, 166, 801-813.	5.2	118
43	The mismatch DNA repair heterodimer, hMSH2/6, regulates BLM helicase. Oncogene, 2004, 23, 3749-3756.	5.9	66
44	Physiological and Pathological Consequences of the Interactions of the p53 Tumor Suppressor with the Glucocorticoid, Androgen, and Estrogen Receptors. Annals of the New York Academy of Sciences, 2004, 1024, 54-71.	3.8	69
45	p53-Induced Up-Regulation of MnSOD and GPx but not Catalase Increases Oxidative Stress and Apoptosis. Cancer Research, 2004, 64, 2350-2356.	0.9	326
46	BLM helicase-dependent transport of p53 to sites of stalled DNA replication forks modulates homologous recombination. EMBO Journal, 2003, 22, 1210-1222.	7.8	196
47	p53 interacts with hRAD51 and hRAD54, and directly modulates homologous recombination. Cancer Research, 2003, 63, 2596-605.	0.9	133
48	The p53 tumour suppressor inhibits glucocorticoidâ€induced proliferation of erythroid progenitors. EMBO Reports, 2002, 3, 569-574.	4.5	35
49	Ligand-dependent interaction of the glucocorticoid receptor with p53 enhances their degradation by Hdm2. Genes and Development, 2001, 15, 2367-2380.	5.9	108
50	Tumour regression in a ligand inducible manner mediated by a chimeric tumour suppressor derived from p53. Oncogene, 2000, 19, 337-350.	5.9	6
51	Negative cross-talk between p53 and the glucocorticoid receptor and its role in neuroblastoma cells. EMBO Journal, 2000, 19, 6051-6064.	7.8	90
52	A novel autophosphorylation mediated regulation of nitrite reductase inCandida utilis. FEBS Letters, 1997, 416, 51-56.	2.8	6
53	In vitro and in vivo regulation of assimilatory nitrite reductase from Candida utilis. Archives of Microbiology, 1997, 168, 215-224.	2.2	7
54	Purification and characterization of assimilatory nitrite reductase from <i>Candida utilis</i> . Biochemical Journal, 1996, 317, 147-155.	3.7	27