
So-Jung Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441536/publications.pdf Version: 2024-02-01

SO-LUNC PARK

#	Article	IF	CITATIONS
1	Controlling the Self-Assembly Structure of Magnetic Nanoparticles and Amphiphilic Block-Copolymers: From Micelles to Vesicles. Journal of the American Chemical Society, 2011, 133, 1517-1525.	13.7	307
2	Polymerâ^'DNA Hybrids as Electrochemical Probes for the Detection of DNA. Journal of the American Chemical Society, 2005, 127, 1170-1178.	13.7	157
3	Hierarchical Self-Assembly of Amphiphilic Semiconducting Polymers into Isolated, Bundled, and Branched Nanofibers. ACS Nano, 2012, 6, 2844-2852.	14.6	141
4	Size-Controlled Self-Assembly of Superparamagnetic Polymersomes. ACS Nano, 2014, 8, 495-502.	14.6	117
5	DNAâ^'Block Copolymer Conjugates. Journal of the American Chemical Society, 2001, 123, 5592-5593.	13.7	100
6	Raspberry-like Metamolecules Exhibiting Strong Magnetic Resonances. ACS Nano, 2015, 9, 1263-1270.	14.6	83
7	Nanoparticle cellular internalization is not required for RNA delivery to mature plant leaves. Nature Nanotechnology, 2022, 17, 197-205.	31.5	80
8	Interfacial Assembly of Nanoparticles in Discrete Block opolymer Aggregates. Angewandte Chemie - International Edition, 2007, 46, 9235-9238.	13.8	77
9	Spiky Gold Nanoshells: Synthesis and Enhanced Scattering Properties. Journal of Physical Chemistry C, 2012, 116, 10318-10324.	3.1	70
10	Controlled Assembly of Plasmonic Nanoparticles: From Static to Dynamic Nanostructures. Advanced Materials, 2021, 33, e2007668.	21.0	70
11	Spiky Gold Nanoshells. Langmuir, 2010, 26, 19170-19174.	3.5	61
12	Controlling the Location of Nanoparticles in Colloidal Assemblies of Amphiphilic Polymers by Tuning Nanoparticle Surface Chemistry. ACS Macro Letters, 2013, 2, 107-111.	4.8	60
13	Multimodal Shape Transformation of Dual-Responsive DNA Block Copolymers. Journal of the American Chemical Society, 2016, 138, 14941-14947.	13.7	60
14	Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. Advanced Materials, 2021, 33, e2006966.	21.0	58
15	Self-Assembly of Amphiphilic Conjugated Diblock Copolymers into One-Dimensional Nanoribbons. Macromolecules, 2014, 47, 161-164.	4.8	56
16	Air–Liquid Interfacial Self-Assembly of Conjugated Block Copolymers into Ordered Nanowire Arrays. ACS Nano, 2014, 8, 12755-12762.	14.6	55
17	Shape changing thin films powered by DNA hybridization. Nature Nanotechnology, 2017, 12, 41-47.	31.5	51
18	Responsive Multidomain Free-Standing Films of Gold Nanoparticles Assembled by DNA-Directed Layer-by-Layer Approach. Nano Letters, 2013, 13, 4449-4455.	9.1	50

SO-JUNG PARK

#	Article	IF	CITATIONS
19	Controlling the Topography and Surface Plasmon Resonance of Gold Nanoshells by a Templated Surfactant-Assisted Seed Growth Method. Journal of Physical Chemistry C, 2013, 117, 8916-8923.	3.1	46
20	Quadrupole-Enhanced Raman Scattering. ACS Nano, 2014, 8, 9025-9034.	14.6	41
21	Self-Assembly of DNA-Coupled Semiconducting Block Copolymers. Macromolecules, 2014, 47, 3720-3726.	4.8	40
22	Synthesis and Single-Particle Surface-Enhanced Raman Scattering Study of Plasmonic Tripod Nanoframes with Y-Shaped Hot-Zones. Nano Letters, 2020, 20, 4362-4369.	9.1	38
23	Improving the Quantum Yields of Semiconductor Quantum Dots through Photoenhancement Assisted by Reducing Agents. Journal of Physical Chemistry C, 2009, 113, 7561-7566.	3.1	33
24	Selfâ€Assembled Hybrid Structures of DNA Blockâ€Copolymers and Nanoparticles with Enhanced DNA Binding Properties. Small, 2010, 6, 2256-2260.	10.0	31
25	Polymersomes and Multicompartment Polymersomes Formed by the Interfacial Self-Assembly of Gold Nanoparticles and Amphiphilic Polymers. ACS Macro Letters, 2013, 2, 805-808.	4.8	31
26	Silver Seeds and Aromatic Surfactants Facilitate the Growth of Anisotropic Metal Nanoparticles: Gold Triangular Nanoprisms and Ultrathin Nanowires. Chemistry of Materials, 2014, 26, 6172-6177.	6.7	31
27	Surfactantâ€Assisted Emulsion Selfâ€Assembly of Nanoparticles into Hollow Vesicle‣ike Structures and 2D Plates. Advanced Functional Materials, 2016, 26, 7791-7798.	14.9	31
28	DNA Island Formation on Binary Block Copolymer Vesicles. Journal of the American Chemical Society, 2016, 138, 10157-10162.	13.7	30
29	Dynamic Nanostructures from DNAâ€Coupled Molecules, Polymers, and Nanoparticles. Small, 2019, 15, e1900504.	10.0	26
30	Peptide-Driven Shape Control of Low-Dimensional DNA Nanostructures. ACS Nano, 2020, 14, 2276-2284.	14.6	25
31	Directional Self-Assembly of Ligand-Stabilized Gold Nanoparticles into Hollow Vesicles through Dynamic Ligand Rearrangement. Langmuir, 2015, 31, 4299-4304.	3.5	24
32	Size and Shape Control of Ice Crystals by Amphiphilic Block Copolymers and Their Implication in the Cryoprotection of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2021, 13, 33969-33980.	8.0	21
33	Encapsulation of Poly(3-hexylthiophene) J-Aggregate Nanofibers with an Amphiphilic Block Copolymer. Langmuir, 2012, 28, 16401-16407.	3.5	20
34	Binary Self-Assembly of Conjugated Block Copolymers and Quantum Dots at the Air–Liquid Interface into Ordered Functional Nanoarrays. ACS Applied Materials & Interfaces, 2019, 11, 28538-28545.	8.0	20
35	Nanoparticle-Induced Self-Assembly of Block Copolymers into Nanoporous Films at the Air–Water Interface. ACS Nano, 2020, 14, 12203-12209.	14.6	20
36	Correlating 3D Surface Atomic Structure and Catalytic Activities of Pt Nanocrystals. Nano Letters, 2021, 21, 1175-1183.	9.1	20

SO-JUNG PARK

#	Article	IF	CITATIONS
37	Controlling Association and Separation of Gold Nanoparticles with Computationally Designed Zinc-Coordinating Proteins. Journal of the American Chemical Society, 2017, 139, 17811-17823.	13.7	18
38	Unusual Weak Interparticle Distance Dependence in Raman Enhancement from Nanoparticle Dimers. Journal of Physical Chemistry C, 2016, 120, 1824-1830.	3.1	17
39	Controlling Magnetic Dipole Resonance in Raspberry-like Metamolecules. Journal of Physical Chemistry C, 2018, 122, 6808-6817.	3.1	17
40	Air–Liquid Interfacial Self-Assembly of Non-Amphiphilic Poly(3-hexylthiophene) Homopolymers. ACS Applied Materials & Interfaces, 2017, 9, 12865-12871.	8.0	16
41	A dynamic DNA nanostructure with switchable and size-selective molecular recognition properties. Nanoscale, 2019, 11, 2501-2509.	5.6	16
42	Janus Nanosheets with Face‣elective Molecular Recognition Properties from DNA–Peptide Conjugates. Small, 2021, 17, e2006110.	10.0	15
43	Vesicle-like assemblies of ligand-stabilized nanoparticles with controllable membrane composition and properties. Nanoscale, 2019, 11, 1837-1846.	5.6	13
44	Long-Range Order Self-Assembly of Conjugated Block Copolymers at Inclined Air–Liquid Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 5099-5105.	8.0	13
45	Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures (Adv. Mater. 46/2021). Advanced Materials, 2021, 33, 2170360.	21.0	13
46	Real-space imaging of nanoparticle transport and interaction dynamics by graphene liquid cell TEM. Science Advances, 2021, 7, eabi5419.	10.3	13
47	RuO ₂ â€coated MoS ₂ Nanosheets as Cathode Catalysts for High Efficiency LiO ₂ Batteries. Bulletin of the Korean Chemical Society, 2019, 40, 642-649.	1.9	11
48	Shape-controlled syntheses of metal oxide nanoparticles by the introduction of rare-earth metals. Nanoscale, 2017, 9, 2732-2738.	5.6	9
49	DNA-Grafted Poly(acrylic acid) for One-Step DNA Functionalization of Iron Oxide Nanoparticles. Langmuir, 2018, 34, 14342-14346.	3.5	8
50	Distinct Optical Magnetism in Gold and Silver Probed by Dynamic Metamolecules. Journal of Physical Chemistry C, 2020, 124, 20436-20444.	3.1	8
51	Responsive Thin-Film Interference Colors from Polaronic Conjugated Block Copolymers. ACS Applied Materials & Interfaces, 2021, 13, 1555-1561.	8.0	8
52	The core composition of DNA block copolymer micelles dictates DNA hybridization properties, nuclease stabilities, and cellular uptake efficiencies. Nanoscale, 2021, 13, 13758-13763.	5.6	7
53	Magnetic Field-Induced Self-Assembly of Conjugated Block Copolymers and Nanoparticles at the Air–Water Interface. ACS Applied Materials & Interfaces, 2022, 14, 8266-8273.	8.0	7
54	Shape hanging DNA‣inked Nanoparticle Films Dictated by Lateral and Vertical Patterns. Advanced Materials, 2022, 34, e2109091.	21.0	6

SO-JUNG PARK

#	Article	IF	CITATIONS
55	Modal interference in spiky nanoshells. Optics Express, 2015, 23, 11290.	3.4	4
56	Optical Magnetic Multipolar Resonances in Large Dynamic Metamolecules. Journal of Physical Chemistry C, 2021, 125, 16605-16619.	3.1	4
57	In Situ Liquid Phase TEM of Nanoparticle Formation and Diffusion in a Phase-Separated Medium. ACS Applied Materials & Interfaces, 2022, 14, 22810-22817.	8.0	4
58	Hypothermic Stem Cell Storage Using a Polypeptide Thermogel. Biomacromolecules, 2021, , .	5.4	3
59	Concurrent Imaging of Surface-Enhanced Raman and Mie Scattering from Built-in Nanogap Plasmonic Particles. Journal of Physical Chemistry Letters, 2021, 12, 5889-5896.	4.6	2
60	Optically Left-Handed Nanopearl Beads with Inductance-Capacitance Circuits at Visible–Near-Infrared Frequencies Based on Scalable Methods. ACS Applied Materials & Interfaces, 2022, 14, 7121-7129.	8.0	1
61	Self-Assembly: Surfactant-Assisted Emulsion Self-Assembly of Nanoparticles into Hollow Vesicle-Like Structures and 2D Plates (Adv. Funct. Mater. 43/2016). Advanced Functional Materials, 2016, 26, 7944-7944.	14.9	0
62	Heterogeneity in Dynamic Metamolecules. Journal of Physical Chemistry C, 2022, 126, 6668-6677.	3.1	0