Hongtao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441238/publications.pdf Version: 2024-02-01

Ησηστήστης

#	Article	IF	CITATIONS
1	Origin and adaptive evolution of UV RESISTANCE LOCUS 8-mediated signaling during plant terrestrialization. Plant Physiology, 2022, 188, 332-346.	4.8	14
2	How plants coordinate their development in response to light and temperature signals. Plant Cell, 2022, 34, 955-966.	6.6	37
3	Express Arabidopsis Cryptochrome in Sf9 Insect Cells Using the. Methods in Molecular Biology, 2021, 2297, 155-160.	0.9	1
4	Semi-In-Vivo Pull-Down Assay for Blue Light-Dependent Protein Interactions. Methods in Molecular Biology, 2021, 2297, 161-166.	0.9	1
5	How plants protect themselves from ultraviolet-B radiation stress. Plant Physiology, 2021, 187, 1096-1103.	4.8	49
6	The CRY2–COP1–HY5–BBX7/8 module regulates blue light-dependent cold acclimation in Arabidopsis. Plant Cell, 2021, 33, 3555-3573.	6.6	49
7	Light-Response Bric-A-Brack/Tramtrack/Broad proteins mediate cryptochrome 2 degradation in response to low ambient temperature. Plant Cell, 2021, 33, 3610-3620.	6.6	14
8	<i>Tasselseed5</i> encodes a cytochrome C oxidase that functions in sex determination by affecting jasmonate catabolism in maize. Journal of Integrative Plant Biology, 2020, 62, 247-255.	8.5	20
9	Three CNGC Family Members, CNGC5, CNGC6, and CNGC9, Are Required for Constitutive Growth of Arabidopsis Root Hairs as Ca2+-Permeable Channels. Plant Communications, 2020, 1, 100001.	7.7	34
10	UVâ€B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO Journal, 2020, 39, e101928.	7.8	97
11	COR27 and COR28 Are Novel Regulators of the COP1–HY5 Regulatory Hub and Photomorphogenesis in Arabidopsis. Plant Cell, 2020, 32, 3139-3154.	6.6	33
12	Photobiology: Light signal transduction and photomorphogenesis. Journal of Integrative Plant Biology, 2020, 62, 1267-1269.	8.5	20
13	Brassinosteroid-Activated BRI1-EMS-SUPPRESSOR 1 Inhibits Flavonoid Biosynthesis and Coordinates Growth and UV-B Stress Responses in Plants. Plant Cell, 2020, 32, 3224-3239.	6.6	79
14	The oligomeric structures of plant cryptochromes. Nature Structural and Molecular Biology, 2020, 27, 480-488.	8.2	59
15	Coordinated Shoot and Root Responses to Light Signaling in Arabidopsis. Plant Communications, 2020, 1, 100026.	7.7	32
16	Spliceosome disassembly factors ILP1 and NTR1 promote miRNA biogenesis in Arabidopsis thaliana. Nucleic Acids Research, 2019, 47, 7886-7900.	14.5	31
17	BES1â€regulated BEE1 controls photoperiodic flowering downstream of blue light signaling pathway in <i>Arabidopsis</i> . New Phytologist, 2019, 223, 1407-1419.	7.3	32
18	Metabolite-mediated TOR signaling regulates the circadian clock in <i>Arabidopsis</i> . Proceedings of the United States of America, 2019, 116, 25395-25397.	7.1	44

Ηοηςτάο Liu

#	Article	IF	CITATIONS
19	Signal transduction mediated by the plant UVâ€B photoreceptor UVR8. New Phytologist, 2019, 221, 1247-1252.	7.3	80
20	UVR8 Interacts with BES1 and BIM1 to Regulate Transcription and Photomorphogenesis in Arabidopsis. Developmental Cell, 2018, 44, 512-523.e5.	7.0	180
21	UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nature Plants, 2018, 4, 98-107.	9.3	155
22	Blue Light Regulates Secondary Cell Wall Thickening via MYC2/MYC4 Activation of the <i>NST1</i> -Directed Transcriptional Network in Arabidopsis. Plant Cell, 2018, 30, 2512-2528.	6.6	59
23	<scp>ClB</scp> 1 and <scp>CO</scp> interact to mediate <scp>CRY</scp> 2â€dependent regulation of flowering. EMBO Reports, 2018, 19, .	4.5	49
24	Differential TOR activation and cell proliferation in <i>Arabidopsis</i> root and shoot apexes. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2765-2770.	7.1	233
25	A photoâ€responsive Fâ€box protein <scp>FOF</scp> 2 regulates floral initiation by promoting <i><scp>FLC</scp></i> expression in Arabidopsis. Plant Journal, 2017, 91, 788-801.	5.7	20
26	Blue Light- and Low Temperature-Regulated COR27 and COR28 Play Roles in the Arabidopsis Circadian Clock. Plant Cell, 2016, 28, 2755-2769.	6.6	56
27	Cyclic nucleotide-gated channel 18 is an essential Ca ²⁺ channel in pollen tube tips for pollen tube guidance to ovules in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 3096-3101.	7.1	136
28	Flowering responses to light and temperature. Science China Life Sciences, 2016, 59, 403-408.	4.9	32
29	Cryptochrome 1 interacts with PIF4 to regulate high temperature-mediated hypocotyl elongation in response to blue light. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 224-229.	7.1	332
30	An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants. Plant Cell, 2015, 27, 349-360.	6.6	128
31	Multiple bHLH Proteins form Heterodimers to Mediate CRY2-Dependent Regulation of Flowering-Time in Arabidopsis. PLoS Genetics, 2013, 9, e1003861.	3.5	159
32	<i>Arabidopsis</i> CRY2 and ZTL mediate blue-light regulation of the transcription factor ClB1 by distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17582-17587.	7.1	78
33	Optogenetic Control of Transcription in Zebrafish. PLoS ONE, 2012, 7, e50738.	2.5	67
34	The action mechanisms of plant cryptochromes. Trends in Plant Science, 2011, 16, 684-691.	8.8	259
35	Blue Light-Dependent Interaction of CRY2 with SPA1 Regulates COP1 activity and Floral Initiation in Arabidopsis. Current Biology, 2011, 21, 841-847.	3.9	351
36	<i>Arabidopsis</i> cryptochrome 1 interacts with SPA1 to suppress COP1 activity in response to blue light. Genes and Development, 2011, 25, 1029-1034.	5.9	321

Ηονςτάο Liu

#	Article	IF	CITATIONS
37	Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20844-20849.	7.1	94
38	A Role for Protein Kinase Casein Kinase2 α-Subunits in the Arabidopsis Circadian Clock Â. Plant Physiology, 2011, 157, 1537-1545.	4.8	62
39	Searching for a photocycle of the cryptochrome photoreceptors. Current Opinion in Plant Biology, 2010, 13, 578-586.	7.1	144
40	The Cryptochrome Blue Light Receptors. The Arabidopsis Book, 2010, 8, e0135.	0.5	246
41	Photoexcited CRY2 Interacts with CIB1 to Regulate Transcription and Floral Initiation in <i>Arabidopsis</i> . Science, 2008, 322, 1535-1539.	12.6	615