Alexandr V Kostochka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441058/publications.pdf

Version: 2024-02-01

165 papers 1,990 citations

331670 21 h-index 32 g-index

166 all docs 166 docs citations

166 times ranked 571 citing authors

#	Article	IF	CITATIONS
1	Covering and coloring polygon-circle graphs. Discrete Mathematics, 1997, 163, 299-305.	0.7	81
2	A Short Proof of the Hajnal–Szemerédi Theorem on Equitable Colouring. Combinatorics Probability and Computing, 2008, 17, 265-270.	1.3	72
3	A fast algorithm for equitable coloring. Combinatorica, 2010, 30, 217-224.	1.2	55
4	An Ore-type theorem on equitable coloring. Journal of Combinatorial Theory Series B, 2008, 98, 226-234.	1.0	52
5	Homomorphisms from sparse graphs with large girth. Journal of Combinatorial Theory Series B, 2004, 90, 147-159.	1.0	44
6	Tur \tilde{A}_i n problems and shadows I: Paths and cycles. Journal of Combinatorial Theory - Series A, 2015, 129, 57-79.	0.8	42
7	On Sufficient Degree Conditions for a Graph to be \$k\$-linked. Combinatorics Probability and Computing, 2006, 15, 685.	1.3	39
8	Choosability conjectures and multicircuits. Discrete Mathematics, 2001, 240, 123-143.	0.7	38
9	Color-Critical Graphs and Hypergraphs with Few Edges: A Survey. Bolyai Society Mathematical Studies, 2006, , 175-197.	0.3	37
10	Ore's conjecture on color-critical graphs is almost true. Journal of Combinatorial Theory Series B, 2014, 109, 73-101.	1.0	36
11	Degree conditions fork-ordered hamiltonian graphs. Journal of Graph Theory, 2003, 42, 199-210.	0.9	34
12	On <mml:math altimg="si4.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn></mml:math> -improper <mml:math altimg="si5.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>2</mml:mn></mml:math> -coloring of sparse graphs. Discrete Mathematics, 2013, 313, 2638-2649.	0.7	32
13	On independent sets in hypergraphs. Random Structures and Algorithms, 2014, 44, 224-239.	1.1	30
14	On the chromatic number of set systems. Random Structures and Algorithms, 2001, 19, 87-98.	1.1	28
15	Dominating sets in k-majority tournaments. Journal of Combinatorial Theory Series B, 2006, 96, 374-387.	1.0	28
16	Coloring uniform hypergraphs with few edges. Random Structures and Algorithms, 2009, 35, 348-368.	1.1	27
17	On domination in connected cubic graphs. Discrete Mathematics, 2005, 304, 45-50.	0.7	26
18	Constructions of sparse uniform hypergraphs with high chromatic number. Random Structures and Algorithms, 2010, 36, 46-56.	1.1	25

#	Article	IF	Citations
19	Coloring uniform hypergraphs with few colors. Random Structures and Algorithms, 2004, 24, 1-10.	1.1	24
20	An extremal problem forH-linked graphs. Journal of Graph Theory, 2005, 50, 321-339.	0.9	24
21	On the Number of Edges in Colour-Critical Graphs and Hypergraphs. Combinatorica, 2000, 20, 521-530. On <mml:math <="" altimg="si1.gif" overflow="scroll" td="" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd"><td>1.2</td><td>23</td></mml:math>	1.2	23
22	xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd"	0.7	23
23	xmlns:se="http://www.elsevier.com/xml/common/struct-olo/dtd xmlns:se="http://www.elsevier.com/x Large Rainbow Matchings in Edge-Coloured Graphs. Combinatorics Probability and Computing, 2012, 21, 255-263.	1.3	23
24	Efficient Graph Packing via Game Colouring. Combinatorics Probability and Computing, 2009, 18, 765-774.	1.3	22
25	Packing chromatic number of cubic graphs. Discrete Mathematics, 2018, 341, 474-483.	0.7	22
26	Ore-type versions of Brooks' theorem. Journal of Combinatorial Theory Series B, 2009, 99, 298-305.	1.0	21
27	Ore's conjecture for k=4 and Grötzsch's Theorem. Combinatorica, 2014, 34, 323-329.	1.2	21
28	On Minimum Degree Implying That a Graph is H‣inked. SIAM Journal on Discrete Mathematics, 2006, 20, 829-840.	0.8	20
29	Graphs with chromatic number close to maximum degree. Discrete Mathematics, 2012, 312, 1273-1281.	0.7	20
30	Describing faces in plane triangulations. Discrete Mathematics, 2014, 319, 47-61.	0.7	20
31	Improper coloring of sparse graphs with a given girth, I: (0,1)-colorings of triangle-free graphs. European Journal of Combinatorics, 2014, 42, 26-48.	0.8	20
32	Strong chromatic index of subcubic planar multigraphs. European Journal of Combinatorics, 2016, 51, 380-397.	0.8	20
33	DP-colorings of graphs with high chromatic number. European Journal of Combinatorics, 2017, 65, 122-129.	0.8	20
34	Precoloring Extensions of Brooks' Theorem. SIAM Journal on Discrete Mathematics, 2004, 18, 542-553.	0.8	19
35	Decomposing a planar graph with girth 9 into a forest and a matching. European Journal of Combinatorics, 2008, 29, 1235-1241.	0.8	19
36	Describing 3-paths in normal plane maps. Discrete Mathematics, 2013, 313, 2702-2711.	0.7	19

#	Article	IF	Citations
37	Stability in the Erdős–Gallai Theorems on cycles and paths. Journal of Combinatorial Theory Series B, 2016, 121, 197,228 An upper bound on the domination number of <mml:math <="" altimg="si1.gif" display="inline" overflow="scroll" td="" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd"><td>1.0</td><td>19</td></mml:math>	1.0	19
38	xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	0.7	18
39	xmins:xocs=thutpx/www.seseviec.com/ximixocs/attabknins!xs= http://www.w3.org/2001/xMLSchema" xmlns:xsi="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:b="http://www.elsevier.com/xml/common/situciobib/did" xmlns:sb="http://www.elsevier.com/xml/common/situciobib/did" xmlns:sb="http://www.elsevier.com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xml/com/xm	0.7	18
40	Packing and Covering Triangles in K 4-free Planar Graphs. Graphs and Combinatorics, 2012, 28, 653-662.	0.4	18
41	Every 4â€Colorable Graph With Maximum Degree 4 Has an Equitable 4â€Coloring. Journal of Graph Theory, 2012, 71, 31-48.	0.9	18
42	Sharp Dirac's theorem for DPâ€critical graphs. Journal of Graph Theory, 2018, 88, 521-546.	0.9	18
43	Injective edge-coloring of graphs with given maximum degree. European Journal of Combinatorics, 2021, 96, 103355.	0.8	18
44	On Graphs With Small Ramsey Numbers, II. Combinatorica, 2004, 24, 389-401.	1.2	17
45	Decomposition of Sparse Graphs into Forests and a Graph with Bounded Degree. Journal of Graph Theory, 2013, 74, 369-391.	0.9	17
46	Graphs with maximum degree 5 are acyclically 7-colorable. Ars Mathematica Contemporanea, 2011, 4, 153-164.	0.6	17
47	Density Conditions for Panchromatic Colourings of Hypergraphs. Combinatorica, 2001, 21, 515-541.	1.2	15
48	A new lower bound on the number of edges in colour-critical graphs and hypergraphs. Journal of Combinatorial Theory Series B, 2003, 87, 374-402.	1.0	15
49	Equitable versus nearly equitable coloring and the Chen-Lih-Wu conjecture. Combinatorica, 2010, 30, 201-216.	1.2	15
50	A list version of Dirac's theorem on the number of edges in colour-critical graphs. Journal of Graph Theory, 2002, 39, 165-177.	0.9	14
51	Nordhaus-Gaddum-type Theorems for decompositions into many parts. Journal of Graph Theory, 2005, 50, 273-292.	0.9	14
52	Packing d-degenerate graphs. Journal of Combinatorial Theory Series B, 2008, 98, 85-94.	1.0	14
53	Tur \tilde{A}_i n Problems and Shadows III: Expansions of Graphs. SIAM Journal on Discrete Mathematics, 2015, 29, 868-876.	0.8	14
54	Turán problems and shadows II: Trees. Journal of Combinatorial Theory Series B, 2017, 122, 457-478.	1.0	14

#	Article	IF	CITATIONS
55	Ore-type graph packing problems. Combinatorics Probability and Computing, 2007, 16, 167. Minimum degree conditions for <mml:math <="" altimg="si1.gif" overflow="scroll" td="" xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema"><td>1.3</td><td>13</td></mml:math>	1.3	13
56	xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd"	0.9	13
57	xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://www.elsevier.com/x Hypergraph list coloring and Euclidean Ramsey theory. Random Structures and Algorithms, 2011, 39, 377-390.	1.1	13
58	Hypergraph Ramsey numbers: Triangles versus cliques. Journal of Combinatorial Theory - Series A, 2013, 120, 1491-1507.	0.8	13
59	Avoiding long Berge cycles. Journal of Combinatorial Theory Series B, 2019, 137, 55-64.	1.0	13
60	On a graph packing conjecture by Bollobás, Eldridge and Catlin. Combinatorica, 2008, 28, 469-485.	1.2	12
61	The Erdős–Lovász Tihany conjecture for quasi-line graphs. Discrete Mathematics, 2009, 309, 3985-3991.	0.7	12
62	A stability theorem on fractional covering of triangles by edges. European Journal of Combinatorics, 2012, 33, 799-806.	0.8	12
63	Planar 4-critical graphs with four triangles. European Journal of Combinatorics, 2014, 41, 138-151.	0.8	12
64	Improper Coloring of Sparse Graphs with a Given Girth, II: Constructions. Journal of Graph Theory, 2016, 81, 403-413.	0.9	12
65	When is an Almost Monochromatic <i>K</i> ₄ Guaranteed?. Combinatorics Probability and Computing, 2008, 17, 823-830.	1.3	11
66	Graphs without short odd cycles are nearly bipartite. Discrete Mathematics, 1997, 163, 279-284.	0.7	10
67	Choosability with Separation of Complete Multipartite Graphs and Hypergraphs. Journal of Graph Theory, 2014, 76, 129-137.	0.9	10
68	Short proofs of coloring theorems on planar graphs. European Journal of Combinatorics, 2014, 36, 314-321.	0.8	10
69	Cycles in triangle-free graphs of large chromatic number. Combinatorica, 2017, 37, 481-494.	1.2	10
70	Stability in the Erdős–Gallai Theorem on cycles and paths, II. Discrete Mathematics, 2018, 341, 1253-1263.	0.7	10
71	Strong edge-colorings of sparse graphs with large maximum degree. European Journal of Combinatorics, 2018, 67, 21-39.	0.8	10
72	Packing Chromatic Number of Subdivisions of Cubic Graphs. Graphs and Combinatorics, 2019, 35, 513-537.	0.4	10

#	Article	IF	CITATIONS
73	On r-uniform hypergraphs with circumference less than r. Discrete Applied Mathematics, 2020, 276, 69-91.	0.9	10
74	Partitions and Edge Colourings of Multigraphs. Electronic Journal of Combinatorics, 2008, 15, .	0.4	10
75	Extremal Graphs for a Graph Packing Theorem of Sauer and Spencer. Combinatorics Probability and Computing, 2007, 16, 409.	1.3	9
76	Ore-type degree conditions for a graph to beH-linked. Journal of Graph Theory, 2008, 58, 14-26.	0.9	9
77	<i>M</i> â€degrees of quadrangleâ€free planar graphs. Journal of Graph Theory, 2009, 60, 80-85.	0.9	9
78	Induced subgraphs with distinct sizes. Random Structures and Algorithms, 2009, 34, 45-53.	1.1	9
79	Conflict-Free Colourings of Uniform Hypergraphs With Few Edges. Combinatorics Probability and Computing, 2012, 21, 611-622.	1.3	9
80	A stability version for a theorem of ErdÅ's on nonhamiltonian graphs. Discrete Mathematics, 2017, 340, 2688-2690.	0.7	9
81	Extensions of a theorem of Erdős on nonhamiltonian graphs. Journal of Graph Theory, 2018, 89, 176-193.	0.9	9
82	A Brooks-Type Result for Sparse Critical Graphs. Combinatorica, 2018, 38, 887-934.	1.2	9
83	Hadwiger Number and the Cartesian Product of Graphs. Graphs and Combinatorics, 2008, 24, 291-301.	0.4	8
84	Large minors in graphs with given independence number. Discrete Mathematics, 2011, 311, 2203-2215.	0.7	8
85	A refinement of a result of Corrádi and Hajnal. Combinatorica, 2015, 35, 497-512.	1.2	8
86	Coloring, sparseness and girth. Israel Journal of Mathematics, 2016, 214, 315-331.	0.8	8
87	On the Corrádi–Hajnal theorem and a question of Dirac. Journal of Combinatorial Theory Series B, 2017, 122, 121-148.	1.0	8
88	On Two Conjectures on Packing of Graphs. Combinatorics Probability and Computing, 2005, 14, 723.	1.3	7
89	Sizes of Induced Subgraphs of Ramsey Graphs. Combinatorics Probability and Computing, 2009, 18, 459-476.	1.3	7
90	Some constructive bounds on Ramsey numbers. Journal of Combinatorial Theory Series B, 2010, 100, 439-445.	1.0	7

#	Article	IF	CITATIONS
91	Ohba's conjecture for graphs with independence number five. Discrete Mathematics, 2011, 311, 996-1005.	0.7	7
92	Graphs Containing Every 2-Factor. Graphs and Combinatorics, 2012, 28, 687-716.	0.4	7
93	Equitable List Coloring of Graphs with Bounded Degree. Journal of Graph Theory, 2013, 74, 309-334.	0.9	7
94	Tight Descriptions of 3â€Paths in Normal Plane Maps. Journal of Graph Theory, 2017, 85, 115-132.	0.9	7
95	Disjoint Kr-minors in large graphs with given average degree. European Journal of Combinatorics, 2005, 26, 289-292.	0.8	6
96	On the number of edges in a graph with no <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>+</mml:mo>+1 subgraphs. Discrete Mathematics, 2016, 339, 682-688.</mml:mrow></mml:math>	<td>> ⁶mml:mo>)</td>	> ⁶ mml:mo>)
97	The (2k-1)-connected multigraphs with at most k-1 disjoint cycles. Combinatorica, 2017, 37, 77-86.	1.2	6
98	Ordered and Convex Geometric Trees with Linear Extremal Function. Discrete and Computational Geometry, 2020, 64, 324-338.	0.6	6
99	The Minimum Number of Edges in 4-Critical Digraphs of Given Order. Graphs and Combinatorics, 2020, 36, 703-718.	0.4	6
100	Defective DP-colorings of sparse multigraphs. European Journal of Combinatorics, 2021, 93, 103267.	0.8	6
101	Smaller planar triangle-free graphs that are not 3-list-colorable. Discrete Mathematics, 2005, 290, 269-274.	0.7	5
102	An Ore-type analogue of the Sauer-Spencer Theorem. Graphs and Combinatorics, 2007, 23, 419-424.	0.4	5
103	On Ks,t minors in (s+t)-chromatic graphs. Journal of Graph Theory, 2010, 65, 343-350.	0.9	5
104	Decomposition of sparse graphs into forests: The Nine Dragon Tree Conjecture for k≠2. Journal of Combinatorial Theory Series B, 2017, 122, 741-756.	1.0	5
105	DP-colorings of hypergraphs. European Journal of Combinatorics, 2019, 78, 134-146.	0.8	5
106	Fractional DPâ€colorings of sparse graphs. Journal of Graph Theory, 2020, 93, 203-221.	0.9	5
107	On-line DP-coloring of graphs. Discrete Applied Mathematics, 2020, 285, 443-453.	0.9	5
108	On 2-defective DP-colorings of sparse graphs. European Journal of Combinatorics, 2021, 91, 103217.	0.8	5

#	Article	IF	CITATIONS
109	Decomposition of cartesian products of regular graphs into isomorphic trees. Electronic Journal of Combinatorics, 2013, 4, 469-490.	0.1	5
110	Hypercube subgraphs with local detours. Journal of Graph Theory, 1999, 30, 101-111.	0.9	4
111	Total choosability of multicircuits II. Journal of Graph Theory, 2002, 40, 44-67.	0.9	4
112	Transversals in Uniform Hypergraphs with Property (p ,2). Combinatorica, 2002, 22, 275-285.	1.2	4
113	Onk-detour subgraphs of hypercubes. Journal of Graph Theory, 2008, 57, 55-64.	0.9	4
114	Planar graphs decomposable into a forest and a matching. Discrete Mathematics, 2009, 309, 277-279.	0.7	4
115	Hadwiger numbers and over-dominating colourings. Discrete Mathematics, 2010, 310, 2662-2665.	0.7	4
116	Ks,t Minors in (s+t)- Chromatic Graphs, II. Journal of Graph Theory, 2014, 75, 377-386.	0.9	4
117	A variation of a theorem by $P ilde{A}^3$ sa. Discrete Mathematics, 2019, 342, 1919-1923.	0.7	4
118	Hypergraphs Not Containing a Tight Tree with a Bounded Trunk. SIAM Journal on Discrete Mathematics, 2019, 33, 862-873.	0.8	4
119	Super-pancyclic hypergraphs and bipartite graphs. Journal of Combinatorial Theory Series B, 2020, 145, 450-465.	1.0	4
120	Packing <mml:math altimg="si24.svg" display="inline" id="d1e96" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo>, of subcubic outerplanar graphs. Discrete Applied Mathematics, 2021, 302, 8-15.</mml:mrow></mml:math>	.1 ⊘.⊚ ml:m	ın∦ <mml:mo:< td=""></mml:mo:<>
121	Defective DP-colorings of sparse simple graphs. Discrete Mathematics, 2022, 345, 112637.	0.7	4
122	Transversals in uniform hypergraphs with property (7,2). Discrete Mathematics, 1999, 207, 277-284.	0.7	3
123	Total choosability of multicircuits I. Journal of Graph Theory, 2002, 40, 26-43.	0.9	3
124	Tree representations of graphs. European Journal of Combinatorics, 2007, 28, 1087-1098.	0.8	3
125	Ore-type conditions implying 2-factors consisting of short cycles. Discrete Mathematics, 2009, 309, 4762-4771.	0.7	3
126	Dense uniform hypergraphs have high list chromatic number. Discrete Mathematics, 2012, 312, 2119-2125.	0.7	3

#	Article	IF	CITATIONS
127	Harmonious coloring of trees with large maximum degree. Discrete Mathematics, 2012, 312, 1633-1637.	0.7	3
128	Degree Lists and Connectedness are 3-Reconstructible for Graphs with At Least Seven Vertices. Graphs and Combinatorics, 2020, 36, 491-501.	0.4	3
129	On Reconstruction of Graphs From the Multiset of Subgraphs Obtained by Deleting â,, Vertices. IEEE Transactions on Information Theory, 2021, 67, 3278-3286.	2.4	3
130	Extremal problems for convex geometric hypergraphs and ordered hypergraphs. Canadian Journal of Mathematics, 0, , 1-19.	0.6	3
131	Many cliques in \$H\$-free subgraphs of random graphs. Electronic Journal of Combinatorics, 2018, 9, 567-597.	0.1	3
132	Matchings in random spanning subgraphs of cubelike graphs. Random Structures and Algorithms, 1990, 1, 277-285.	1.1	2
133	Regular Honest Graphs, Isoperimetric Numbers, and Bisection of Weighted Graphs. European Journal of Combinatorics, 1999, 20, 469-481.	0.8	2
134	Even cycles in hypergraphs. Journal of Combinatorial Theory Series B, 2005, 94, 173-182.	1.0	2
135	On 2-Detour Subgraphs of the Hypercube. Graphs and Combinatorics, 2008, 24, 265-272.	0.4	2
136	Many disjoint dense subgraphs versus large <mml:math altimg="si1.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -connected subgraphs in large graphs with given edge density. Discrete Mathematics, 2009, 309, 997-1000. A Brooks-type bound for squares of <mml:math <="" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>0.7</td><td>2</td></mml:math>	0.7	2
137	altimg="si16.gif" display="inline" overflow="scroll"> <mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mn>4<td>0.7 mri><td>l:mrow></td></td></mml:mn></mml:mrow></mml:msub>	0.7 mri> <td>l:mrow></td>	l:mrow>
138	display="inline" overflow="scroll"> <mml:mrow><mml:mo>(</mml:mo><mml:mi>k</mml:mi><mml:mo>â^'</mml:mo><mml:mn>1 <mml:math altimg="si8.gif" display="inline" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mo>(</mml:mo><mml:mi></mml:mi><mml:mo>+</mml:mo><mml:mn>1<td>0.7</td><td>_</td></mml:mn></mml:mrow></mml:math></mml:mn></mml:mrow>	0.7	_
139	graphs and hyperg. Discrete Mathematics, 2013, 313, 366-374. A new tool for proving Vizing's Theorem. Discrete Mathematics, 2014, 326, 1-3.	0.7	2
140	The minimum number of edges in a 4-critical graph that is bipartite plus 3 edges. European Journal of Combinatorics, 2015, 46, 89-94.	0.8	2
141	Strengthening Theorems of Dirac and ErdÅ's on Disjoint Cycles. Journal of Graph Theory, 2017, 85, 788-802.	0.9	2
142	Directed Intersection Representations and the Information Content of Digraphs. , 2019, , .		2
143	Hypergraphs not containing a tight tree with a bounded trunk II: 3-trees with a trunk of size 2. Discrete Applied Mathematics, 2020, 276, 50-59.	0.9	2
144	The minimum spectral radius of <mml:math altimg="si13.svg" display="inline" id="d1e22" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:mi>K</mml:mi></mml:mrow><mml:mrow><mml:mi>r<td>0.7 ni><mml:r< td=""><td>nō>+</td></mml:r<></td></mml:mi></mml:mrow></mml:msub></mml:math>	0.7 ni> <mml:r< td=""><td>nō>+</td></mml:r<>	nō>+

#	Article	IF	CITATIONS
145	Partitioning ordered hypergraphs. Journal of Combinatorial Theory - Series A, 2021, 177, 105300.	0.8	2
146	On the Number of Edges in Hypergraphs Critical with Respect to Strong Colourings. European Journal of Combinatorics, 2000, 21, 249-255.	0.8	1
147	Irreducible hypergraphs for Hall-type conditions, and arc-minimal digraph expanders. European Journal of Combinatorics, 2005, 26, 1119-1138.	0.8	1
148	Packing of graphs with small product of sizes. Journal of Combinatorial Theory Series B, 2008, 98, 1411-1415.	1.0	1
149	Graphs with bounded tree-width and large odd-girth are almost bipartite. Journal of Combinatorial Theory Series B, 2010, 100, 554-559.	1.0	1
150	Minors in Graphs with High Chromatic Number. Combinatorics Probability and Computing, 2011, 20, 513-518.	1.3	1
151	A Hypergraph Version of a Graph Packing Theorem by Bollob \tilde{A}_i s and Eldridge. Journal of Graph Theory, 2013, 74, 222-235.	0.9	1
152	On a packing problem of Alon and Yuster. Discrete Mathematics, 2016, 339, 2785-2792.	0.7	1
153	A list version of graph packing. Discrete Mathematics, 2016, 339, 2178-2185.	0.7	1
154	3-regular graphs are 2-reconstructible. European Journal of Combinatorics, 2021, 91, 103216.	0.8	1
155	On Sizes of 1-Cross Intersecting Set Pair Systems. Siberian Mathematical Journal, 2021, 62, 842-849.	0.6	1
156	Disjoint Chorded Cycles in Graphs with High Ore-Degree. Springer Optimization and Its Applications, 2020, , 259-304.	0.9	1
157	Monochromatic connected matchings in 2â€edgeâ€colored multipartite graphs. Journal of Graph Theory, 2022, 100, 578-607.	0.9	1
158	Decomposing Graphs into Long Paths. Order, 2003, 20, 239-253.	0.5	0
159	Adding Edges to Increase the Chromatic Number of a Graph. Combinatorics Probability and Computing, 2016, 25, 592-594.	1.3	0
160	A Sharp Dirac–Erdős Type Bound for Large Graphs. Combinatorics Probability and Computing, 2018, 27, 387-397.	1.3	0
161	Extremal Union-Closed Set Families. Graphs and Combinatorics, 2019, 35, 1495-1502.	0.4	0
162	Largest 2-Regular Subgraphs in 3-Regular Graphs. Graphs and Combinatorics, 2019, 35, 805-813.	0.4	0

#	Article	IF	CITATIONS
163	Cut-Edges and Regular Factors in Regular Graphs of Odd Degree. Graphs and Combinatorics, 2021, 37, 199-207.	0.4	O
164	Monochromatic paths and cycles in 2-edge-coloured graphs with large minimum degree. Combinatorics Probability and Computing, 2022, 31, 109-122.	1.3	0
165	Longest cycles in 3â€connected hypergraphs and bipartite graphs. Journal of Graph Theory, 0, , .	0.9	O