
Stephen J Mcsorley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5441033/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Naive CD4+ T Cell Frequency Varies for Different Epitopes and Predicts Repertoire Diversity and Response Magnitude. Immunity, 2007, 27, 203-213.	14.3	857
2	Distinct Dendritic Cell Populations Sequentially Present Antigen to CD4 T Cells and Stimulate Different Aspects of Cell-Mediated Immunity. Immunity, 2003, 19, 47-57.	14.3	646
3	INVIVOACTIVATION OFANTIGEN-SPECIFICCD4 T CELLS. Annual Review of Immunology, 2001, 19, 23-45.	21.8	463
4	NOD1 and NOD2 signalling links ER stress with inflammation. Nature, 2016, 532, 394-397.	27.8	396
5	Regulation of the immune response by nitric oxide differentially produced by T helper type 1 and T helper type 2 cells. European Journal of Immunology, 1994, 24, 980-984.	2.9	374
6	Bacterial Flagellin Is an Effective Adjuvant for CD4+ T Cells In Vivo. Journal of Immunology, 2002, 169, 3914-3919.	0.8	240
7	CCR6-Mediated Dendritic Cell Activation of Pathogen-Specific T Cells in Peyer's Patches. Immunity, 2006, 24, 623-632.	14.3	217
8	Tracking Salmonella-Specific CD4 T Cells In Vivo Reveals a Local Mucosal Response to a Disseminated Infection. Immunity, 2002, 16, 365-377.	14.3	216
9	Characterization of CD4+ T Cell Responses During Natural Infection with <i>Salmonella typhimurium</i> . Journal of Immunology, 2000, 164, 986-993.	0.8	215
10	The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nature Immunology, 2012, 13, 729-736.	14.5	196
11	Salmonella Infection Drives Promiscuous B Cell Activation Followed by Extrafollicular Affinity Maturation. Immunity, 2015, 43, 120-131.	14.3	186
12	Antibody Is Required for Protection against Virulent but Not Attenuated Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2000, 68, 3344-3348.	2.2	177
13	Expression of T-bet by CD4 T Cells Is Essential for Resistance to <i>Salmonella</i> Infection. Journal of Immunology, 2005, 175, 4603-4610.	0.8	142
14	Toll-like Receptor and Inflammasome Signals Converge to Amplify the Innate Bactericidal Capacity of T Helper 1 Cells. Immunity, 2014, 40, 213-224.	14.3	90
15	Immune profiling with a Salmonella Typhi antigen microarray identifies new diagnostic biomarkers of human typhoid. Scientific Reports, 2013, 3, 1043.	3.3	87
16	Salmonella flagellin, a microbial target of the innate and adaptive immune system. Immunology Letters, 2005, 101, 117-122.	2.5	86
17	Protective host immune responses to <i>Salmonella</i> infection. Future Microbiology, 2015, 10, 101-110.	2.0	86
18	Tracking the dynamics of T-cell activation in response to Salmonella infection. Immunology, 2005, 114, 450-458.	4.4	85

#	Article	IF	CITATIONS
19	Identification of a common immune signature in murine and human systemic Salmonellosis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4998-5003.	7.1	83
20	Innate Immune Activation during <i>Salmonella</i> Infection Initiates Extramedullary Erythropoiesis and Splenomegaly. Journal of Immunology, 2010, 185, 6198-6204.	0.8	74
21	TLR5 functions as an endocytic receptor to enhance flagellinâ€specific adaptive immunity. European Journal of Immunology, 2011, 41, 29-38.	2.9	74
22	Temporal Expression of Bacterial Proteins Instructs Host CD4 T Cell Expansion and Th17 Development. PLoS Pathogens, 2012, 8, e1002499.	4.7	73
23	TLR5-Deficient Mice Lack Basal Inflammatory and Metabolic Defects but Exhibit Impaired CD4 T Cell Responses to a Flagellated Pathogen. Journal of Immunology, 2011, 186, 5406-5412.	0.8	71
24	Microbial-Induced Th17: Superhero or Supervillain?. Journal of Immunology, 2012, 189, 3285-3291.	0.8	70
25	Immunity to intestinal pathogens: lessons learned from <i><scp>S</scp>almonella</i> . Immunological Reviews, 2014, 260, 168-182.	6.0	70
26	Massive Number of Antigen-Specific CD4 T Cells during Vaccination with Live Attenuated <i>Salmonella</i> Causes Interclonal Competition. Journal of Immunology, 2004, 172, 6884-6893.	0.8	69
27	B Cells Enhance Antigen-Specific CD4 T Cell Priming and Prevent Bacteria Dissemination following Chlamydia muridarum Genital Tract Infection. PLoS Pathogens, 2013, 9, e1003707.	4.7	68
28	Cutting Edge: B Cells Are Essential for Protective Immunity against <i>Salmonella</i> Independent of Antibody Secretion. Journal of Immunology, 2012, 189, 5503-5507.	0.8	66
29	SARS-CoV-2 induces robust germinal center CD4 T follicular helper cell responses in rhesus macaques. Nature Communications, 2021, 12, 541.	12.8	66
30	Low-Dose <i>Salmonella</i> Infection Evades Activation of Flagellin-Specific CD4 T Cells. Journal of Immunology, 2004, 173, 4091-4099.	0.8	64
31	Innate Immune Activation of CD4 T Cells in <i>Salmonella</i> -Infected Mice Is Dependent on IL-18. Journal of Immunology, 2007, 178, 6342-6349.	0.8	64
32	<i>Salmonella</i> Flagellin Induces Bystander Activation of Splenic Dendritic Cells and Hinders Bacterial Replication In Vivo. Journal of Immunology, 2007, 179, 6169-6175.	0.8	57
33	Dissemination of Persistent Intestinal Bacteria via the Mesenteric Lymph Nodes Causes Typhoid Relapse. Infection and Immunity, 2011, 79, 1479-1488.	2.2	56
34	MHC class-I-restricted CD8 T cells play a protective role during primary Salmonella infection. Immunology Letters, 2012, 148, 138-143.	2.5	54
35	Selective tolerization of Th1-like cells after nasal administration of a cholera toxoid-LACK conjugate. European Journal of Immunology, 1998, 28, 424-432.	2.9	50
36	T Cell Clonal Conditioning: A Phase Occurring Early after Antigen Presentation but before Clonal Expansion Is Impacted by Toll-Like Receptor Stimulation. Journal of Immunology, 2004, 172, 248-259.	0.8	50

#	Article	IF	CITATIONS
37	Immunological Tolerance to a Pancreatic Antigen as a Result of Local Expression of TNFα by Islet β Cells. Immunity, 1997, 7, 401-409.	14.3	44
38	A re-evaluation of the role of B cells in protective immunity to Chlamydia infection. Immunology Letters, 2015, 164, 88-93.	2.5	43
39	CCR6-dependent recruitment of blood phagocytes is necessary for rapid CD4 T cell responses to local bacterial infection. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12075-12080.	7.1	42
40	Culling of Activated CD4 T Cells during Typhoid Is Driven by <i>Salmonella</i> Virulence Genes. Journal of Immunology, 2009, 182, 7838-7845.	0.8	39
41	Collateral Damage: Detrimental Effect of Antibiotics on the Development of Protective Immune Memory. MBio, 2016, 7, .	4.1	37
42	Optimal protection against <i>Salmonella</i> infection requires noncirculating memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10416-10421.	7.1	37
43	Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS ONE, 2016, 11, e0154253.	2.5	36
44	Association of macrophage and lymphocyte infiltration with outcome in canine osteosarcoma. Veterinary and Comparative Oncology, 2019, 17, 49-60.	1.8	33
45	Multi-color flow cytometry for evaluating age-related changes in memory lymphocyte subsets in dogs. Developmental and Comparative Immunology, 2018, 87, 64-74.	2.3	31
46	T Cell and APC Dynamics In Situ Control the Outcome of Vaccination. Journal of Immunology, 2010, 185, 239-252.	0.8	30
47	U-Omp19 from Brucella abortus Is a Useful Adjuvant for Vaccine Formulations against Salmonella Infection in Mice. Frontiers in Immunology, 2017, 8, 171.	4.8	30
48	Tracking the Dynamics of Salmonella Specific T Cell Responses. Current Topics in Microbiology and Immunology, 2009, 334, 179-198.	1.1	29
49	Host cells subdivide nutrient niches into discrete biogeographical microhabitats for gut microbes. Cell Host and Microbe, 2022, 30, 836-847.e6.	11.0	29
50	Immunology of murine leishmaniasis. Clinics in Dermatology, 1996, 14, 451-464.	1.6	27
51	A Protective Vaccine against Chlamydia Genital Infection Using Vault Nanoparticles without an Added Adjuvant. Vaccines, 2017, 5, 3.	4.4	26
52	Development of canine PD-1/PD-L1 specific monoclonal antibodies and amplification of canine T cell function. PLoS ONE, 2020, 15, e0235518.	2.5	26
53	Salmonella as a Model for Non-Cognate Th1 Cell Stimulation. Frontiers in Immunology, 2014, 5, 621.	4.8	25
54	Salmonella enterica Serovar Typhi Impairs CD4 T Cell Responses by Reducing Antigen Availability. Infection and Immunity, 2014, 82, 2247-2254.	2.2	25

#	Article	IF	CITATIONS
55	Rapid CD4 ⁺ Tâ€eell responses to bacterial flagellin require dendritic cell expression of Syk and CARD9. European Journal of Immunology, 2015, 45, 513-524.	2.9	25
56	Dual Immunization with SseB/Flagellin Provides Enhanced Protection against <i>Salmonella</i> Infection Mediated by Circulating Memory Cells. Journal of Immunology, 2017, 199, 1353-1361.	0.8	25
57	Successful Treatment of Bacterial Infection Hinders Development of Acquired Immunity. Journal of Immunology, 2009, 183, 1263-1270.	0.8	24
58	T cell expression of IL-18R and DR3 is essential for non-cognate stimulation of Th1 cells and optimal clearance of intracellular bacteria. PLoS Pathogens, 2017, 13, e1006566.	4.7	24
59	Absence of TLR11 in Mice Does Not Confer Susceptibility to Salmonella Typhi. Cell, 2016, 164, 827-828.	28.9	22
60	Direct visualization of endogenous <i>Salmonellaâ€</i> specific B cells reveals a marked delay in clonal expansion and germinal center development. European Journal of Immunology, 2015, 45, 428-441.	2.9	21
61	Transient Loss of Protection Afforded by a Live Attenuated Non-typhoidal Salmonella Vaccine in Mice Co-infected with Malaria. PLoS Neglected Tropical Diseases, 2015, 9, e0004027.	3.0	21
62	Vaccination by inducing oral tolerance?. Trends in Immunology, 1999, 20, 555-560.	7.5	20
63	Generation of Salmonella-specific Th1 cells requires sustained antigen stimulation. Vaccine, 2011, 29, 2697-2704.	3.8	20
64	Visualizing the immune response to pathogens. Current Opinion in Immunology, 2004, 16, 494-498.	5.5	18
65	Exposure to LPS suppresses CD4+ T cell cytokine production inSalmonella-infected mice and exacerbates murine typhoid. Journal of Leukocyte Biology, 2007, 81, 403-411.	3.3	18
66	B7-H1 (Programmed Cell Death Ligand 1) Is Required for the Development of Multifunctional Th1 Cells and Immunity to Primary, but Not Secondary,SalmonellaInfection. Journal of Immunology, 2010, 185, 2442-2449.	0.8	17
67	Activation of Salmonella-specific immune responses in the intestinal mucosa. Archivum Immunologiae Et Therapiae Experimentalis, 2006, 54, 25-31.	2.3	16
68	Selective down-regulation of Th2 immune responses following treatment with antigen-coupled splenocytes. European Journal of Immunology, 1997, 27, 848-854.	2.9	15
69	Metastatic immune infiltrates correlate with those of the primary tumour in canine osteosarcoma. Veterinary and Comparative Oncology, 2019, 17, 242-252.	1.8	15
70	Diversity in the T cell response to Chlamydia-sum are better than one. Immunology Letters, 2018, 202, 59-64.	2.5	14
71	Salmonella Infection Enhances Erythropoietin Production by the Kidney and Liver, Which Correlates with Elevated Bacterial Burdens. Infection and Immunity, 2016, 84, 2833-2841.	2.2	13
72	Contaminated water delivery as a simple and effective method of experimental <i>Salmonella</i> infection. Future Microbiology, 2015, 10, 1615-1627.	2.0	12

#	Article	IF	CITATIONS
73	Antibody, but not Bâ€cell–dependent antigen presentation, plays an essential role in preventing <i>Chlamydia</i> systemic dissemination in mice. European Journal of Immunology, 2020, 50, 676-684.	2.9	12
74	Circulating immunity protects the female reproductive tract from <i>Chlamydia</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
75	Th1 cells are dispensable for primary clearance of Chlamydia from the female reproductive tract of mice. PLoS Pathogens, 2022, 18, e1010333.	4.7	11
76	Expression of Toll/IL-1R domain-containing adaptor protein (TIRAP) is detrimental to primary clearance of Salmonella and is not required for the generation of protective immunity. Immunology Letters, 2008, 116, 64-71.	2.5	10
77	Increased Susceptibility to <i>Salmonella</i> Infection in Signal Regulatory Protein α-Deficient Mice. Journal of Immunology, 2012, 189, 2537-2544.	0.8	10
78	The Role of Non-Cognate T Cell Stimulation during Intracellular Bacterial Infection. Frontiers in Immunology, 2014, 5, 319.	4.8	10
79	CCR7 Deficiency Allows Accelerated Clearance of <i>Chlamydia</i> from the Female Reproductive Tract. Journal of Immunology, 2017, 199, 2547-2554.	0.8	9
80	NOD1/NOD2 and RIP2 Regulate Endoplasmic Reticulum Stress-Induced Inflammation during <i>Chlamydia</i> Infection. MBio, 2020, 11, .	4.1	9
81	Cohousing with Dirty Mice Increases the Frequency of Memory T Cells and Has Variable Effects on Intracellular Bacterial Infection. ImmunoHorizons, 2022, 6, 184-190.	1.8	8
82	Unexpected Role of CD8 T Cells in Accelerated Clearance of Salmonella enterica Serovar Typhimurium from H-2 Congenic mice. Infection and Immunity, 2019, 87, .	2.2	5
83	CD4+ T cell immunity to Salmonella is transient in the circulation. PLoS Pathogens, 2021, 17, e1010004.	4.7	5
84	Paneth cells: targets of friendly fire. Nature Immunology, 2013, 14, 114-116.	14.5	4
85	Adhesion Molecules Associated with Female Genital Tract Infection. PLoS ONE, 2016, 11, e0156605.	2.5	4
86	Maintenance of Type IV Secretion Function During Helicobacter pylori Infection in Mice. MBio, 2020, 11,	4.1	3
87	Introduction to special issue on microbiome influences on host immunity. Immunology Letters, 2014, 162, 1-2.	2.5	0