Vladimir I Gelfand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5440076/publications.pdf

Version: 2024-02-01

133 papers 9,739 citations

51 h-index 94 g-index

171 all docs

171 docs citations

171 times ranked

7591 citing authors

#	Article	IF	CITATIONS
1	Ataxin-2 is essential for cytoskeletal dynamics and neurodevelopment in Drosophila. IScience, 2022, 25, 103536.	4.1	2
2	A novel mechanism of bulk cytoplasmic transport by cortical dynein in Drosophila ovary. ELife, 2022, 11, .	6.0	10
3	Tissue architecture: Two kinesins collaborate inÂbuilding basement membrane. Current Biology, 2022, 32, R162-R165.	3.9	O
4	Gatekeeper function for Short stop at the ring canals of the Drosophila ovary. Current Biology, 2021, 31, 3207-3220.e4.	3.9	23
5	Kinetochore protein Spindly controls microtubule polarity in $\langle i \rangle$ Drosophila $\langle i \rangle$ axons. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12155-12163.	7.1	12
6	Ser/Thr kinase Trc controls neurite outgrowth in Drosophila by modulating microtubule-microtubule sliding. ELife, 2020, 9, .	6.0	9
7	Competition between kinesin-1 and myosin-V defines Drosophila posterior determination. ELife, 2020, 9,	6.0	36
8	Kinesinâ€dependent transport of keratin filaments: a unified mechanism for intermediate filament transport. FASEB Journal, 2019, 33, 388-399.	0.5	22
9	Unconventional Roles of Cytoskeletal Mitotic Machinery in Neurodevelopment. Trends in Cell Biology, 2019, 29, 901-911.	7.9	23
10	Conserved role for Ataxinâ€2 in mediating endoplasmic reticulum dynamics. Traffic, 2019, 20, 436-447.	2.7	17
11	Repurposing Kinetochore Microtubule Attachment Machinery in Neurodevelopment. Developmental Cell, 2019, 48, 746-748.	7.0	O
12	Microtubule Dynamics, Kinesin-1 Sliding, andÂDynein Action Drive Growth of Cell Processes. Biophysical Journal, 2018, 115, 1614-1624.	0.5	19
13	Ooplasmic flow cooperates with transport and anchorage in <i>Drosophila</i> oocyte posterior determination. Journal of Cell Biology, 2018, 217, 3497-3511.	5.2	37
14	Microtubule-Based Transport and the Distribution, Tethering, and Organization of Organelles. Cold Spring Harbor Perspectives in Biology, 2017, 9, a025817.	5.5	167
15	Moonlighting Motors: Kinesin, Dynein, and Cell Polarity. Trends in Cell Biology, 2017, 27, 505-514.	7.9	84
16	Diatrack particle tracking software: Review of applications and performance evaluation. Traffic, 2017, 18, 840-852.	2.7	42
17	Mechanical coupling of microtubule-dependent motor teams during peroxisome transport in Drosophila S2 cells. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 3178-3189.	2.4	10
18	Chemical structure-guided design of dynapyrazoles, cell-permeable dynein inhibitors with a unique mode of action. ELife, 2017, 6, .	6.0	31

#	Article	IF	CITATIONS
19	Methods for Determining the Cellular Functions of Vimentin Intermediate Filaments. Methods in Enzymology, 2016, 568, 389-426.	1.0	30
20	Intermediate filament dynamics: What we can see now and why it matters. BioEssays, 2016, 38, 232-243.	2.5	55
21	Engineered kinesin motor proteins amenable to small-molecule inhibition. Nature Communications, 2016, 7, 11159.	12.8	28
22	Role of kinesin-1–based microtubule sliding in <i>Drosophila</i> nervous system development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4985-94.	7.1	73
23	Microtubule–microtubule sliding by kinesin-1 is essential for normal cytoplasmic streaming in <i>Drosophila</i> oocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4995-5004.	7.1	73
24	A Genome-wide RNAi Screen for Microtubule Bundle Formation and Lysosome Motility Regulation in Drosophila S2 Cells. Cell Reports, 2016, 14, 611-620.	6.4	6
25	Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts. Molecular Biology of the Cell, 2016, 27, 608-616.	2.1	32
26	Pavarotti/MKLP1 Regulates Microtubule Sliding and Neurite Outgrowth in Drosophila Neurons. Current Biology, 2015, 25, 200-205.	3.9	56
27	Kinesin-1–powered microtubule sliding initiates axonal regeneration in <i>Drosophila</i> cultured neurons. Molecular Biology of the Cell, 2015, 26, 1296-1307.	2.1	80
28	Vimentin filament precursors exchange subunits in an ATP-dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3505-14.	7.1	50
29	Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Molecular Biology of the Cell, 2015, 26, 1675-1686.	2.1	80
30	Mitochondrial membrane potential is regulated by vimentin intermediate filaments. FASEB Journal, 2015, 29, 820-827.	0.5	73
31	Interplay between kinesin-1 and cortical dynein during axonal outgrowth and microtubule organization in Drosophila neurons. ELife, 2015, 4, e10140.	6.0	86
32	Protein kinase Darkener of apricot and its substrate ${\rm EF1}\hat{\rm l}^3$ regulate organelle transport along microtubules. Journal of Cell Science, 2014, 127, 33-9.	2.0	15
33	Drosophila Strip serves as a platform for early endosome organization during axon elongation. Nature Communications, 2014, 5, 5180.	12.8	40
34	Microtubuleâ€dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rhoâ€and p21â€activated kinases. FASEB Journal, 2014, 28, 2879-2890.	0.5	55
35	Breaking Up Isn't Easy: Myosin V and Its Cargoes Need Dma1ÂUbiquitin Ligase's Help. Developmental Cell 2014, 28, 479-480.	'7.0	1
36	The journey of the organelle: teamwork and regulation in intracellular transport. Current Opinion in Cell Biology, 2013, 25, 483-488.	5.4	52

#	Article	IF	Citations
37	The Microtubule-Binding Protein Ensconsin Is an Essential Cofactor of Kinesin-1. Current Biology, 2013, 23, 317-322.	3.9	119
38	Initial Neurite Outgrowth in Drosophila Neurons Is Driven by Kinesin-Powered Microtubule Sliding. Current Biology, 2013, 23, 1018-1023.	3.9	157
39	Organelle Transport in Cultured Drosophila Cells: S2 Cell Line and Primary Neurons Journal of Visualized Experiments, 2013, , e50838.	0.3	16
40	Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein. Nature, 2012, 484, 125-129.	27.8	342
41	Vimentin intermediate filaments modulate the motility of mitochondria. Molecular Biology of the Cell, 2011, 22, 2282-2289.	2.1	114
42	Bidirectional intracellular transport: utility and mechanism. Biochemical Society Transactions, 2011, 39, 1126-1130.	3.4	45
43	Diverging Effects Of CAMP/PKA In The Traffic And Function Of The Na,K-ATPase In Alveolar Epithelial Cells., 2011,,.		0
44	Intracellular Transport: ER and Mitochondria Meet and Greet along Designated Tracks. Current Biology, 2010, 20, R845-R847.	3.9	9
45	Microtubule-mediated transport of the tumor-suppressor protein Merlin and its mutants. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 7311-7316.	7.1	41
46	Role of kinesin light chainâ€2 of kinesinâ€1 in the traffic of Na,Kâ€ATPaseâ€containing vesicles in alveolar epithelial cells. FASEB Journal, 2010, 24, 374-382.	0.5	17
47	Kinesin-1 heavy chain mediates microtubule sliding to drive changes in cell shape. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12151-12156.	7.1	119
48	Cytoplasmic microtubule sliding. Communicative and Integrative Biology, 2010, 3, 589-591.	1.4	9
49	Statistics of Active Transport in Xenopus Melanophores Cells. Biophysical Journal, 2010, 99, 3216-3223.	0.5	6
50	Myosin-Va restrains the trafficking of Na+/K+-ATPase-containing vesicles in alveolar epithelial cells. Journal of Cell Science, 2009, 122, 3915-3922.	2.0	27
51	The dynamic properties of intermediate filaments during organelle transport. Journal of Cell Science, 2009, 122, 2914-2923.	2.0	62
52	Opposite-polarity motors activate one another to trigger cargo transport in live cells. Journal of Cell Biology, 2009, 187, 1071-1082.	5.2	203
53	Motor-cargo release: CaMKII as a traffic cop. Nature Cell Biology, 2008, 10, 3-5.	10.3	5
54	α–E-catenin binds to dynamitin and regulates dynactin-mediated intracellular traffic. Journal of Cell Biology, 2008, 183, 989-997.	5.2	29

#	Article	IF	Citations
55	The role of microtubule movement in bidirectional organelle transport. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10011-10016.	7.1	131
56	Microtubule binding by dynactin is required for microtubule organization but not cargo transport. Journal of Cell Biology, 2007, 176, 641-651.	5.2	124
57	Tracking melanosomes inside a cell to study molecular motors and their interaction. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5378-5382.	7.1	99
58	Rab32 Regulates Melanosome Transport in Xenopus Melanophores by Protein Kinase A Recruitment. Current Biology, 2007, 17, 2030-2034.	3.9	38
59	Organelle Transport along Microtubules in Xenopus Melanophores: Evidence for Cooperation between Multiple Motors. Biophysical Journal, 2006, 90, 318-327.	0.5	184
60	Melanosomes Transported by Myosin-V in Xenopus Melanophores Perform Slow 35nm Steps. Biophysical Journal, 2006, 90, L07-L09.	0.5	39
61	Regulation of mitochondria distribution by RhoA and formins. Journal of Cell Science, 2006, 119, 659-670.	2.0	88
62	Paradigm lost: milton connects kinesin heavy chain to miro on mitochondria. Journal of Cell Biology, 2006, 173, 459-461.	5.2	55
63	Kinesin and Dynein Move a Peroxisome in Vivo: A Tug-of-War or Coordinated Movement?. Science, 2005, 308, 1469-1472.	12.6	563
64	Regulation of Bidirectional Melanosome Transport by Organelle Bound MAP Kinase. Current Biology, 2005, 15, 459-463.	3.9	41
65	Transport of Drosophila fragile X mental retardation protein-containing ribonucleoprotein granules by kinesin-1 and cytoplasmic dynein. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17428-17433.	7.1	151
66	Differential regulation of dynein-driven melanosome movement. Biochemical and Biophysical Research Communications, 2003, 309, 652-658.	2.1	31
67	Dynactin is required for bidirectional organelle transport. Journal of Cell Biology, 2003, 160, 297-301.	5.2	281
68	Pigment Cells: A Model for the Study of Organelle Transport. Annual Review of Cell and Developmental Biology, 2003, 19, 469-491.	9.4	153
69	Optical manipulation of silicon microparticles in biological environments., 2003,,.		1
70	Interactions and regulation of molecular motors in Xenopus melanophores. Journal of Cell Biology, 2002, 156, 855-865.	5.2	284
71	Improved Sensitivity for Phosphopeptide Mapping Using Capillary Column HPLC and Microionspray Mass Spectrometry:Â Comparative Phosphorylation Site Mapping from Gel-Derived Proteins. Analytical Chemistry, 2002, 74, 3221-3231.	6.5	72
72	Motor–cargo interactions: the key to transport specificity. Trends in Cell Biology, 2002, 12, 21-27.	7.9	174

#	Article	IF	Citations
73	Regulation of molecular motor proteins. International Review of Cytology, 2001, 204, 179-238.	6.2	43
74	A Dominant Negative Approach for Functional Studies of the Kinesin II Complex., 2001, 164, 191-204.		10
75	Purification of Kinesin from the Brain. , 2001, 164, 1-7.		3
76	Cell Cycle Regulation of Myosin-V by Calcium/Calmodulin-Dependent Protein Kinase II. Science, 2001, 293, 1317-1320.	12.6	141
77	Of Yeast, Mice, and Men. Journal of Cell Biology, 2001, 152, F21-F24.	5.2	39
78	Membrane trafficking, organelle transport, and the cytoskeleton. Current Opinion in Cell Biology, 2000, 12, 57-62.	5.4	173
79	Postsynaptic Scaffolds of Excitatory and Inhibitory Synapses in Hippocampal Neurons: Maintenance of Core Components Independent of Actin Filaments and Microtubules. Journal of Neuroscience, 2000, 20, 4545-4554.	3.6	217
80	Regulation of Melanosome Movement in the Cell Cycle by Reversible Association with Myosin V. Journal of Cell Biology, 1999, 146, 1265-1276.	5.2	125
81	Molecular Mechanisms of Pigment Transport in Melanophores. Pigment Cell & Melanoma Research, 1999, 12, 283-294.	3.6	71
82	Myosin cooperates with microtubule motors during organelle transport in melanophores. Current Biology, 1998, 8, 161-164.	3.9	240
83	Regulation of Organelle Movement in Melanophores by Protein Kinase A (PKA), Protein Kinase C (PKC), and Protein Phosphatase 2A (PP2A). Journal of Cell Biology, 1998, 142, 803-813.	5.2	89
84	Heterotrimeric Kinesin II Is the Microtubule Motor Protein Responsible for Pigment Dispersion in Xenopus Melanophores. Journal of Cell Biology, 1998, 143, 1547-1558.	5.2	175
85	[30] In Vitro motility assay for melanophore pigment organelles. Methods in Enzymology, 1998, 298, 361-372.	1.0	24
86	Role of Actin in Anchoring Postsynaptic Receptors in Cultured Hippocampal Neurons: Differential Attachment of NMDA versus AMPA Receptors. Journal of Neuroscience, 1998, 18, 2423-2436.	3.6	518
87	Regulated bidirectional motility of melanophore pigment granules along microtubules in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 3720-3725.	7.1	212
88	Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro Journal of Cell Biology, 1995, 128, 107-115.	5.2	214
89	Microtubule dynamics in fish melanophores Journal of Cell Biology, 1994, 126, 1455-1464.	5.2	75
90	Structural and biochemical properties of kinesin heavy chain associated with rat brain mitochondria. Cytoskeleton, 1994, 28, 79-93.	4.4	34

#	Article	IF	Citations
91	Analysis of antineuronal antibodies in sera of patients with amyotrophic lateral sclerosis. Bulletin of Experimental Biology and Medicine, 1993, 115, 168-171.	0.8	1
92	Microtubule-dependent control of cell shape and pseudopodial activity is inhibited by the antibody to kinesin motor domain Journal of Cell Biology, 1993, 123, 1811-1820.	5.2	159
93	HSP70-related 65 kDa protein of beet yellows closterovirus is a microtubule-binding protein. FEBS Letters, 1992, 304, 12-14.	2.8	63
94	Every motion has its motor. Nature, 1992, 359, 480-481.	27.8	36
95	Some of eukaryotic elongation factor 2 is colocalized with actin microfilament bundles in mouse embryo fibroblasts. Cell Biology International Reports, 1991, 15, 75-84.	0.6	25
96	Microtubule Dynamics: Mechanism, Regulation, and Function. Annual Review of Cell Biology, 1991, 7, 93-116.	26.1	213
97	MAP2-mediated binding of chromaffin granules to microtubules. FEBS Letters, 1991, 282, 65-68.	2.8	15
98	Kinesin is responsible for centrifugal movement of pigment granules in melanophores Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4956-4960.	7.1	167
99	Coalignment of vimentin intermediate filaments with microtubules depends on kinesin. Nature, 1991, 353, 445-448.	27.8	215
100	Stimulation of actin synthesis in phalloidin-treated cells. FEBS Letters, 1990, 277, 11-14.	2.8	25
101	Direct visualization of bipolar myosin filaments in stress fibers of cultured fibroblasts. Cytoskeleton, 1989, 12, 150-156.	4.4	42
102	Cytoplasmic microtubular motors. Current Opinion in Cell Biology, 1989, 1, 63-66.	5.4	16
103	The quaternary structure of bovine brain kinesin EMBO Journal, 1988, 7, 353-356.	7.8	167
104	Immunofluorescent localization of protein synthesis components in mouse embryo fibroblasts. Cell Biology International Reports, 1987, 11, 745-753.	0.6	28
105	18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS Letters, 1987, 212, 145-148.	2.8	53
106	Organization of stress fibers in cultured fibroblasts after extraction of actin with bovine brain gelsolin-like protein. Experimental Cell Research, 1987, 173, 244-255.	2.6	24
107	The movement of melanosomes in melanophore fragments obtained by laser microbeam irradiation. Cell Biology International Reports, 1987, 11, 565-572.	0.6	5
108	Bovine brain kinesin is a microtubule-activated ATPase Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 8530-8534.	7.1	199

#	Article	IF	Citations
109	Glycerol models of ciliated epithelium of the bronchial mucosa and their use for the diagnosis of chronic nonspecific lung diseases. Bulletin of Experimental Biology and Medicine, 1986, 101, 105-107.	0.8	O
110	Polarization of cytoplasmic fragments microsurgically detached from mouse fibroblasts. Cell Biology International Reports, 1985, 9, 883-892.	0.6	14
111	Identification of a 100 kD protein associated with microtubules, intermediate filaments and coated vesicles in cultured cells. Experimental Cell Research, 1985, 159, 377-387.	2.6	10
112	Possible role of centrioles in stabilization of cytoplasmic microtubules. Bulletin of Experimental Biology and Medicine, 1984, 97, 511-514.	0.8	0
113	Phalloidin and tropomyosin do not prevent actin filament shortening by the 90 kD protein-actin complex from brain. Biochemical and Biophysical Research Communications, 1984, 123, 596-603.	2.1	20
114	MAP2 competes with MAP1 for binding to microtubules. Biochemical and Biophysical Research Communications, 1984, 119, 173-178.	2.1	9
115	Role of ATP in the regulation of stability of cytoskeletal structures. Cell Biology International Reports, 1983, 7, 173-187.	0.6	43
116	Visualization of cellular focal contacts using a monoclonal antibody to 80 kD serum protein adsorbed on the substratum. Experimental Cell Research, 1983, 149, 387-396.	2.6	41
117	Effects of small doses of cytochalasins on fibroblasts: preferential changes of active edges and focal contacts Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7754-7757.	7.1	40
118	Purification of high-M r microtubule proteins MAP1 and MAP2. FEBS Letters, 1981, 135, 237-240.	2.8	46
119	Microtubule-associated protein MAP1 promotes microtubule assembly in vitro. FEBS Letters, 1981, 135, 241-244.	2.8	63
120	G-actin-tubulin interaction. FEBS Letters, 1981, 135, 290-294.	2.8	6
121	Comparison of mitostatic effect, cell uptake and tubulin-binding activity of colchicine and colcemid. Biochimica Et Biophysica Acta - General Subjects, 1981, 673, 86-92.	2.4	7
122	Multinucleation of transformed cells normalizes their spreading on the substratum and their cytoskeleton structure. Cell Biology International Reports, 1981, 5, 143-150.	0.6	9
123	Destruction of microfilament bundles in mouse embryo fibroblasts treated with inhibitors of energy metabolism. Experimental Cell Research, 1980, 127, 421-429.	2.6	105
124	High molecular weight protein MAP 2 promoting microtubuleassembly in vitro is associated with microtubules in cells. Cell Biology International Reports, 1980, 4, 1017-1024.	0.6	28
125	Effect of various substances on colchicine uptake by cells sensitive and resistant to it. Bulletin of Experimental Biology and Medicine, 1979, 88, 1062-1065.	0.8	0
126	Cold-stable microtubules in the cytoplasm of mouse embryo fibroblasts. Cell Biology International Reports, 1979, 3, 45-50.	0.6	26

#	ARTICLE	IF	CITATIONS
127	Microtubules in mouse embryo fibro blasts extracted with Triton X-100. Cell Biology International Reports, 1978, 2, 425-432.	0.6	60
128	Microtubular system in cultured mouse epithelial cells. Cell Biology International Reports, 1978, 2, 345-351.	0.6	14
129	A new ATPase in cytoplasmic microtubule preparations. FEBS Letters, 1978, 88, 197-200.	2.8	33
130	Purification of a thermostable high molecular weight factor promoting tubulin polymerization. FEBS Letters, 1978, 95, 339-342.	2.8	14
131	Polymerization of purified tubulin by synthetic polycations. FEBS Letters, 1978, 95, 343-346.	2.8	16
132	A study of microtubule structures in solution by small-angle X-ray scattering. FEBS Letters, 1977, 84, 153-155.	2.8	14
133	Short Stop is a Gatekeeper at the Ring Canals of <i>Drosophila</i> Ovary. SSRN Electronic Journal, 0, ,	0.4	0