
Eva Candal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/543988/publications.pdf Version: 2024-02-01

Ενα Οανισαι

#	Article	IF	CITATIONS
1	Study of the glial cytoarchitecture of the developing olfactory bulb of a shark using immunochemical markers of radial glia. Brain Structure and Function, 2022, 227, 1067.	2.3	1
2	Embryonic nutritional hyperglycemia decreases cell proliferation in the zebrafish retina. Histochemistry and Cell Biology, 2022, 158, 401-409.	1.7	1
3	Loss of Active Neurogenesis in the Adult Shark Retina. Frontiers in Cell and Developmental Biology, 2021, 9, 628721.	3.7	11
4	Identifying Amygdala-Like Territories in <i>Scyliorhinus canicula</i> (Chondrichthyan): Evidence for a Pallial Amygdala. Brain, Behavior and Evolution, 2021, , 1-22.	1.7	3
5	Decline in Constitutive Proliferative Activity in the Zebrafish Retina with Ageing. International Journal of Molecular Sciences, 2021, 22, 11715.	4.1	5
6	Differential expression of five prosomatostatin genes in the central nervous system of the catshark <scp><i>Scyliorhinus canicula</i></scp> . Journal of Comparative Neurology, 2020, 528, 2333-2360.	1.6	9
7	The Brains of Cartilaginous Fishes. , 2020, , 101-123.		1
8	Characterization of neurogenic niches in the telencephalon of juvenile and adult sharks. Brain Structure and Function, 2020, 225, 817-839.	2.3	12
9	Mitral cell development in the olfactory bulb of sharks: evidences of a conserved pattern of glutamatergic neurogenesis. Brain Structure and Function, 2019, 224, 2325-2341.	2.3	3
10	Expression of radial glial markers (GFAP, BLBP and GS) during telencephalic development in the catshark (Scyliorhinus canicula). Brain Structure and Function, 2019, 224, 33-56.	2.3	18
11	Neurogenetic asymmetries in the catshark developing habenulae: mechanistic and evolutionary implications. Scientific Reports, 2018, 8, 4616.	3.3	9
12	The Shark Basal Hypothalamus: Molecular Prosomeric Subdivisions and Evolutionary Trends. Frontiers in Neuroanatomy, 2018, 12, 17.	1.7	8
13	Study of pallial neurogenesis in shark embryos and the evolutionary origin of the subventricular zone. Brain Structure and Function, 2018, 223, 3593-3612.	2.3	18
14	A Developmental Study of the Cerebellar Nucleus in the Catshark, a Basal Gnathostome. Brain, Behavior and Evolution, 2017, 89, 1-14.	1.7	5
15	The Brains of Cartilaginous Fishes. , 2017, , 77-97.		13
16	Identification of Radial Glia Progenitors in the Developing and Adult Retina of Sharks. Frontiers in Neuroanatomy, 2016, 10, 65.	1.7	19
17	The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends. Frontiers in Neuroanatomy, 2016, 10, 113.	1.7	11
18	Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan–gnathostome transition. Brain Structure and Function, 2016, 221, 1321-1335.	2.3	24

Eva Candal

#	Article	IF	CITATIONS
19	Morphogenesis of the cerebellum and cerebellum-related structures in the shark Scyliorhinus canicula: insights on the ground pattern of the cerebellar ontogeny. Brain Structure and Function, 2016, 221, 1691-1717.	2.3	23
20	Prosomeric organization of the hypothalamus in an elasmobranch, the catshark Scyliorhinus canicula. Frontiers in Neuroanatomy, 2015, 09, 37.	1.7	24
21	Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications. Brain Structure and Function, 2015, 220, 2905-2926.	2.3	25
22	Doublecortin is widely expressed in the developing and adult retina of sharks. Experimental Eye Research, 2015, 134, 90-100.	2.6	27
23	Development of the Terminal Nerve System in the Shark <i>Scyliorhinus canicula</i> . Brain, Behavior and Evolution, 2014, 84, 277-287.	1.7	8
24	Development of the cerebellar afferent system in the shark <i>Scyliorhinus canicula</i> : Insights into the basal organization of precerebellar nuclei in gnathostomes. Journal of Comparative Neurology, 2014, 522, 131-168.	1.6	28
25	Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Structure and Function, 2014, 219, 85-104.	2.3	32
26	Contributions of Developmental Studies in the Dogfish <i>Scyliorhinus canicula</i> to the Brain Anatomy of Elasmobranchs: Insights on the Basal Ganglia. Brain, Behavior and Evolution, 2012, 80, 127-141.	1.7	32
27	Dynamic expression of Pax6 in the shark olfactory system: evidence for the presence of Pax6 cells along the olfactory nerve pathway. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 79-90.	1.3	18
28	Pax6 expression during retinogenesis in sharks: comparison with markers of cell proliferation and neuronal differentiation. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 91-108.	1.3	29
29	Regionalization of the Shark Hindbrain: A Survey of an Ancestral Organization. Frontiers in Neuroanatomy, 2011, 5, 16.	1.7	23
30	Comparative analysis of Met-enkephalin, galanin and GABA immunoreactivity in the developing trout preoptic–hypophyseal system. General and Comparative Endocrinology, 2011, 173, 148-158.	1.8	14
31	Pax6 expression during retinogenesis in sharks: comparison with markers of cell proliferation and neuronal differentiation. , 2011, , n/a-n/a.		0
32	Patterns of cell proliferation and rod photoreceptor differentiation in shark retinas. Journal of Chemical Neuroanatomy, 2010, 39, 1-14.	2.1	45
33	Calretinin immunoreactivity in the developing retina of sharks: Comparison with cell proliferation and GABAergic system markers. Experimental Eye Research, 2010, 91, 378-386.	2.6	17
34	Morphogenesis in the retina of a slow-developing teleost: Emergence of the GABAergic system in relation to cell proliferation and differentiation. Brain Research, 2008, 1194, 21-27.	2.2	20
35	Development of the cerebellar body in sharks: Spatiotemporal relations of Pax6 expression, cell proliferation and differentiation. Neuroscience Letters, 2008, 432, 105-110.	2.1	45
36	Early development of GABAergic cells of the retina in sharks: An immunohistochemical study with GABA and GAD antibodies. Journal of Chemical Neuroanatomy, 2008, 36, 6-16.	2.1	23

Eva Candal

#	Article	IF	CITATIONS
37	The segmental organization of the developing shark brain based on neurochemical markers, with special attention to the prosencephalon. Brain Research Bulletin, 2008, 75, 236-240.	3.0	34
38	Ol-insm1b, a SNAG family transcription factor involved in cell cycle arrest during medaka development. Developmental Biology, 2007, 309, 1-17.	2.0	19
39	Developmental mechanisms for retinal degeneration in the blind cavefish <i>Astyanax mexicanus</i> . Journal of Comparative Neurology, 2007, 505, 221-233.	1.6	76
40	Medaka simplet (FAM53B) belongs to a family of novel vertebrate genes controlling cell proliferation. Development (Cambridge), 2006, 133, 1881-1890.	2.5	40
41	Patterns of cell proliferation and cell death in the developing retina and optic tectum of the brown trout. Developmental Brain Research, 2005, 154, 101-119.	1.7	96
42	Reelin expression in the retina and optic tectum of developing common brown trout. Developmental Brain Research, 2005, 154, 187-197.	1.7	9
43	Cell proliferation in the developing and adult hindbrain and midbrain of trout and medaka (teleosts): A segmental approach. Developmental Brain Research, 2005, 160, 157-175.	1.7	39
44	An automated in situ hybridization screen in the medaka to identify unknown neural genes. Developmental Dynamics, 2005, 234, 698-708.	1.8	19
45	Expression domains suggest cell-cycle independent roles of growth-arrest molecules in the adult brain of the medaka, Oryzias latipes. Brain Research Bulletin, 2005, 66, 426-430.	3.0	15
46	Medaka as a model system for the characterisation of cell cycle regulators: a functional analysis of Ol-Gadd45Î ³ during early embryogenesis. Mechanisms of Development, 2004, 121, 945-958.	1.7	31