Alejandro López-Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439715/publications.pdf

Version: 2024-02-01

50 papers	3,792 citations	27 h-index	223800 46 g-index
51	51	51	7136 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	LAG-3 Blockade with Relatlimab (BMS-986016) Restores Anti-Leukemic Responses in Chronic Lymphocytic Leukemia. Cancers, 2021, 13, 2112.	3.7	62
2	BTLA/HVEM Axis Induces NK Cell Immunosuppression and Poor Outcome in Chronic Lymphocytic Leukemia. Cancers, 2021, 13, 1766.	3.7	27
3	A cytofluorimetric assay to evaluate intracellular cytokine production by NK cells. Methods in Enzymology, 2020, 631, 343-355.	1.0	8
4	Daratumumab is a safe and effective rescue therapy for multiple myeloma patients who relapse after allo-HSCT. Bone Marrow Transplantation, 2020, 55, 461-463.	2.4	3
5	Evaluation of NK cell cytotoxic activity against malignant cells by the calcein assay. Methods in Enzymology, 2020, 631, 483-495.	1.0	10
6	Mechanisms of Apoptosis Resistance to NK Cell-Mediated Cytotoxicity in Cancer. International Journal of Molecular Sciences, 2020, 21, 3726.	4.1	61
7	Editorial: Dendritic Cell-Based Immunotherapy in Solid and Haematologic Tumors. Frontiers in Immunology, 2020, 11, 507.	4.8	5
8	Mechanisms of Resistance to NK Cell Immunotherapy. Cancers, 2020, 12, 893.	3.7	34
9	The Mithralog EC-7072 Induces Chronic Lymphocytic Leukemia Cell Death by Targeting Tonic B-Cell Receptor Signaling. Frontiers in Immunology, 2019, 10, 2455.	4.8	4
10	WNT Signaling in Cancer Immunosurveillance. Trends in Cell Biology, 2019, 29, 44-65.	7.9	168
11	NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers, 2019, 11, 29.	3.7	82
12	CD107a Degranulation Assay to Evaluate Immune Cell Antitumor Activity. Methods in Molecular Biology, 2019, 1884, 119-130.	0.9	43
13	A Flow Cytometric NK Cell-Mediated Cytotoxicity Assay to Evaluate Anticancer Immune Responses In Vitro. Methods in Molecular Biology, 2019, 1884, 131-139.	0.9	6
14	Immunosurveillance of cancer cell stress. Cell Stress, 2019, 3, 295-309.	3.2	10
15	lg-Like Transcript 2 (ILT2) Blockade and Lenalidomide Restore NK Cell Function in Chronic Lymphocytic Leukemia. Frontiers in Immunology, 2018, 9, 2917.	4.8	35
16	Cancer-Induced Endoplasmic Reticulum Stress in T Cells Subverts Immunosurveillance. Cell Metabolism, 2018, 28, 803-805.	16.2	4
17	The hallmarks of successful anticancer immunotherapy. Science Translational Medicine, 2018, $10, \dots$	12.4	419
18	NK-cell Editing Mediates Epithelial-to-Mesenchymal Transition via Phenotypic and Proteomic Changes in Melanoma Cell Lines. Cancer Research, 2018, 78, 3913-3925.	0.9	53

#	Article	IF	CITATIONS
19	Involvement of autophagy in NK cell development and function. Autophagy, 2017, 13, 633-636.	9.1	27
20	Biallelic IRF8 Mutations Causing NK Cell Deficiency. Trends in Molecular Medicine, 2017, 23, 195-197.	6.7	2
21	NKG2D Signaling: The Immune Subversive Side of HDAC3. Trends in Immunology, 2017, 38, 151-153.	6.8	0
22	IFN Signaling and ICB Resistance: Time is on Tumor's Side. Trends in Cancer, 2017, 3, 161-163.	7.4	14
23	Immunosurveillance of Malignant Cells with Complex Karyotypes. Trends in Cell Biology, 2017, 27, 880-884.	7.9	12
24	lg-like transcript 2 (ILT2) suppresses T cell function in chronic lymphocytic leukemia. Oncolmmunology, 2017, 6, e1353856.	4.6	14
25	Control of Metastasis by NK Cells. Cancer Cell, 2017, 32, 135-154.	16.8	549
26	Soluble NKG2D ligands limit the efficacy of immune checkpoint blockade. Oncolmmunology, 2017, 6, e1346766.	4.6	21
27	Immune and inflammatory responses to DNA damage in cancer and aging. Mechanisms of Ageing and Development, 2017, 165, 10-16.	4.6	32
28	The Molecular Basis of the Immune Response to Stressed Cells and Tissues. , 2016, , 53-79.		0
29	Carcinoma–astrocyte gap junctions promote brain metastasis by cGAMP transfer. Nature, 2016, 533, 493-498.	27.8	677
30	Drug-induced hyperploidy stimulates an antitumor NK cell response mediated by NKG2D and DNAM-1 receptors. Oncolmmunology, 2016, 5, e1074378.	4.6	36
31	Caspases Connect Cell-Death Signaling to Organismal Homeostasis. Immunity, 2016, 44, 221-231.	14.3	279
32	Pleiotropic Anti-Angiogenic and Anti-Oncogenic Activities of the Novel Mithralog Demycarosyl-3D-ÃÝ-D-Digitoxosyl-Mithramycin SK (EC-8042). PLoS ONE, 2015, 10, e0140786.	2.5	11
33	NKG2D signaling in cancer immunosurveillance. International Journal of Cancer, 2015, 136, 1741-1750.	5.1	109
34	Lenalidomide Induces Immunomodulation in Chronic Lymphocytic Leukemia and Enhances Antitumor Immune Responses Mediated by NK and CD4 T Cells. BioMed Research International, 2014, 2014, 1-11.	1.9	51
35	Molecular Bases for the Regulation of NKG2D Ligands in Cancer. Frontiers in Immunology, 2014, 5, 106.	4.8	52
36	Expansion of NK Cells and Reduction of NKG2D Expression in Chronic Lymphocytic Leukemia. Correlation with Progressive Disease. PLoS ONE, 2014, 9, e108326.	2.5	69

#	Article	IF	CITATIONS
37	Epithelial–Mesenchymal Transition Induces an Antitumor Immune Response Mediated by NKG2D Receptor. Journal of Immunology, 2013, 190, 4408-4419.	0.8	89
38	Regulation of NKG2D signaling during the epithelial-to-mesenchymal transition. Oncolmmunology, 2013, 2, e25820.	4.6	11
39	Expression of ERp5 and GRP78 on the membrane of chronic lymphocytic leukemia cells: association with soluble MICA shedding. Cancer Immunology, Immunotherapy, 2012, 61, 1201-1210.	4.2	44
40	Conceptual aspects of self and nonself discrimination. Self/nonself, 2011, 2, 19-25.	2.0	27
41	NK cell immune recognition. , 2010, , 65-77.		1
42	Prognostic significance of CD8 and CD4 T cells in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2010, 51, 1829-1836.	1.3	73
43	Comment on "Proteasome Regulation of ULBP1 Transcription― Journal of Immunology, 2009, 183, 4145.1-4145.	0.8	0
44	HDAC3 represses the expression of NKG2D ligands ULBPs in epithelial tumour cells: potential implications for the immunosurveillance of cancer. Oncogene, 2009, 28, 2370-2382.	5.9	107
45	Papel de MICA en la patogenia de la artritis reumatoide. Seminarios De La Fundaciâ^šâ‰¥n Espaâ^šÂ±ola De Reumatologâ^šâ‰a, 2008, 9, 77-85.	0.1	0
46	The NKG2D receptor: sensing stressed cells. Trends in Molecular Medicine, 2008, 14, 179-189.	6.7	103
47	NKG2D ligands: key targets of the immune response. Trends in Immunology, 2008, 29, 397-403.	6.8	218
48	MHC class I chain-related gene B (MICB) is associated with rheumatoid arthritis susceptibility. Rheumatology, 2007, 46, 426-430.	1.9	35
49	MHC Class I Chain-Related Gene B Promoter Polymorphisms and Celiac Disease. Human Immunology, 2006, 67, 208-214.	2.4	29
50	Transcriptional Regulation of ULBP1, a Human Ligand of the NKG2D Receptor. Journal of Biological Chemistry, 2006, 281, 30419-30430.	3.4	54