
Balakuntalam S Kasinath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5439516/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oncoprotein DJ-1 interacts with mTOR complexes to effect transcription factor Hif1α-dependent expression of collagen I (α2) during renal fibrosis. Journal of Biological Chemistry, 2022, 298, 102246.	3.4	5
2	Hydrogen Sulfide and the Kidney. Advances in Experimental Medicine and Biology, 2021, 1315, 17-50.	1.6	0
3	Proximal tubular epithelial insulin receptor mediates high-fat diet–induced kidney injury. JCI Insight, 2021, 6, .	5.0	8
4	Fatigue characteristics on dialysis and non-dialysis days in patients with chronic kidney failure on maintenance hemodialysis. BMC Nephrology, 2021, 22, 112.	1.8	16
5	Chloride channel accessory 1 integrates chloride channel activity and mTORC1 in agingâ€related kidney injury. Aging Cell, 2021, 20, e13407.	6.7	11
6	High glucose-stimulated enhancer of zeste homolog-2 (EZH2) forces suppression of deptor to cause glomerular mesangial cell pathology. Cellular Signalling, 2021, 86, 110072.	3.6	6
7	TGFβ acts through PDGFRβ to activate mTORC1 via the Akt/PRAS40 axis and causes glomerular mesangial cell hypertrophy and matrix protein expression. Journal of Biological Chemistry, 2020, 295, 14262-14278.	3.4	16
8	Branched-Chain Amino Acids Depletion during Hemodialysis Is Associated with Fatigue. American Journal of Nephrology, 2020, 51, 565-571.	3.1	7
9	Tubular \hat{I}^2 -catenin and FoxO3 interactions protect in chronic kidney disease. JCI Insight, 2020, 5, .	5.0	19
10	The tumor suppressor TMEM127 regulates insulin sensitivity in a tissue-specific manner. Nature Communications, 2019, 10, 4720.	12.8	14
11	Crossâ€sectional comparison of healthâ€span phenotypes in young versus geriatric marmosets. American Journal of Primatology, 2019, 81, e22952.	1.7	23
12	High glucose increases miRâ€214 to power a feedback loop involving PTEN and the Akt/mTORC1 signaling axis. FEBS Letters, 2019, 593, 2261-2272.	2.8	14
13	Deacetylation of S6 kinase promotes high glucose–induced glomerular mesangial cell hypertrophy and matrix protein accumulation. Journal of Biological Chemistry, 2019, 294, 9440-9460.	3.4	16
14	Marmoset as a Model to Study Kidney Changes Associated With Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2019, 74, 315-324.	3.6	19
15	microRNA-181a downregulates deptor for TGFβ-induced glomerular mesangial cell hypertrophy and matrix protein expression. Experimental Cell Research, 2018, 364, 5-15.	2.6	13
16	Hydrogen sulfide ameliorates aging-associated changes in the kidney. GeroScience, 2018, 40, 163-176.	4.6	49
17	Hydrogen sulfide as a regulatory factor in kidney health and disease. Biochemical Pharmacology, 2018, 149, 29-41.	4.4	34
18	Quality of Life and Depression Among <scp>M</scp> exican <scp>A</scp> mericans on Hemodialysis: A Preliminary Report. Therapeutic Apheresis and Dialysis, 2018, 22, 166-170.	0.9	10

#	Article	IF	CITATIONS
19	Akt2 causes TGFÎ ² -induced deptor downregulation facilitating mTOR to drive podocyte hypertrophy and matrix protein expression. PLoS ONE, 2018, 13, e0207285.	2.5	16
20	Hydrogen sulfide inhibits high glucose-induced NADPH oxidase 4 expression and matrix increase by recruiting inducible nitric oxide synthase in kidney proximal tubular epithelial cells. Journal of Biological Chemistry, 2017, 292, 5665-5675.	3.4	40
21	PDGF receptor-β uses Akt/mTORC1 signaling node to promote high glucose-induced renal proximal tubular cell collagen I (α2) expression. American Journal of Physiology - Renal Physiology, 2017, 313, F291-F307.	2.7	16
22	Tryptophan Metabolism in Patients With Chronic Kidney Disease Secondary to Type 2 Diabetes: Relationship to Inflammatory Markers. International Journal of Tryptophan Research, 2017, 10, 117864691769460.	2.3	89
23	Reciprocal regulation of miR-214 and PTEN by high glucose regulates renal glomerular mesangial and proximal tubular epithelial cell hypertrophy and matrix expansion. American Journal of Physiology - Cell Physiology, 2017, 313, C430-C447.	4.6	55
24	The podocyte and the proteoglycan. American Journal of Physiology - Renal Physiology, 2016, 311, F310-F311.	2.7	1
25	Disease drivers of aging. Annals of the New York Academy of Sciences, 2016, 1386, 45-68.	3.8	97
26	MicroRNA-214 Reduces Insulin-like Growth Factor-1 (IGF-1) Receptor Expression and Downstream mTORC1 Signaling in Renal Carcinoma Cells. Journal of Biological Chemistry, 2016, 291, 14662-14676.	3.4	32
27	Hydrophobic motif site-phosphorylated protein kinase CβII between mTORC2 and Akt regulates high glucose-induced mesangial cell hypertrophy. American Journal of Physiology - Cell Physiology, 2016, 310, C583-C596.	4.6	15
28	Genetic Variants in Toll-Like Receptor 4 Gene and Their Association Analysis with Estimated Glomerular Filtration Rate in Mexican American Families. CardioRenal Medicine, 2016, 6, 301-306.	1.9	3
29	Hydrogen Sulfide in Renal Physiology and Disease. Antioxidants and Redox Signaling, 2016, 25, 720-731.	5.4	82
30	Rapamycin Increases Mortality in <i>db/db</i> Mice, a Mouse Model of Type 2 Diabetes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 850-857.	3.6	57
31	High glucose enhances microRNA-26a to activate mTORC1 for mesangial cell hypertrophy and matrix protein expression. Cellular Signalling, 2015, 27, 1276-1285.	3.6	38
32	Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes. Journal of Biological Chemistry, 2015, 290, 12014-12026.	3.4	38
33	High Glucose Forces a Positive Feedback Loop Connecting Akt Kinase and FoxO1 Transcription Factor to Activate mTORC1 Kinase for Mesangial Cell Hypertrophy and Matrix Protein Expression. Journal of Biological Chemistry, 2014, 289, 32703-32716.	3.4	38
34	A positive feedback loop involving Erk5 and Akt turns on mesangial cell proliferation in response to PDGF. American Journal of Physiology - Cell Physiology, 2014, 306, C1089-C1100.	4.6	21
35	Activation of Glycogen Synthase Kinase 3β Ameliorates Diabetes-induced Kidney Injury. Journal of Biological Chemistry, 2014, 289, 35363-35375.	3.4	42
36	Hydrogen sulfide to the rescue in obstructive kidney injury. Kidney International, 2014, 85, 1255-1258.	5.2	15

#	Article	IF	CITATIONS
37	Combined acute hyperglycemic and hyperinsulinemic clamp induced profibrotic and proinflammatory responses in the kidney. American Journal of Physiology - Cell Physiology, 2014, 306, C202-C211.	4.6	15
38	microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion. Experimental Cell Research, 2014, 328, 99-117.	2.6	55
39	TGFβ-Induced Deptor Suppression Recruits mTORC1 and Not mTORC2 to Enhance Collagen I (α2) Gene Expression. PLoS ONE, 2014, 9, e109608.	2.5	36
40	NFκB-mediated cyclin D1 expression by microRNA-21 influences renal cancer cell proliferation. Cellular Signalling, 2013, 25, 2575-2586.	3.6	45
41	Transforming Growth Factor β Integrates Smad 3 to Mechanistic Target of Rapamycin Complexes to Arrest Deptor Abundance for Glomerular Mesangial Cell Hypertrophy. Journal of Biological Chemistry, 2013, 288, 7756-7768.	3.4	31
42	Hydrogen Sulfide Inhibits High Glucose-induced Matrix Protein Synthesis by Activating AMP-activated Protein Kinase in Renal Epithelial Cells. Journal of Biological Chemistry, 2012, 287, 4451-4461.	3.4	108
43	Unrestrained Mammalian Target of Rapamycin Complexes 1 and 2 Increase Expression of Phosphatase and Tensin Homolog Deleted on Chromosome 10 to Regulate Phosphorylation of Akt Kinase. Journal of Biological Chemistry, 2012, 287, 3808-3822.	3.4	37
44	TGFβ-Stimulated MicroRNA-21 Utilizes PTEN to Orchestrate AKT/mTORC1 Signaling for Mesangial Cell Hypertrophy and Matrix Expansion. PLoS ONE, 2012, 7, e42316.	2.5	100
45	Molecular events in matrix protein metabolism in the aging kidney. Aging Cell, 2012, 11, 1065-1073.	6.7	38
46	HIV-1 Promotes Renal Tubular Epithelial Cell Protein Synthesis: Role of mTOR Pathway. PLoS ONE, 2012, 7, e30071.	2.5	11
47	microRNA-21 Governs TORC1 Activation in Renal Cancer Cell Proliferation and Invasion. PLoS ONE, 2012, 7, e37366.	2.5	70
48	Rapamycin selectively alters serum chemistry in diabetic mice. Pathobiology of Aging & Age Related Diseases, 2012, 2, 15896.	1.1	4
49	Erk in Kidney Diseases. Journal of Signal Transduction, 2011, 2011, 1-8.	2.0	37
50	High glucose upregulation of early-onset Parkinson's disease protein DJ-1 integrates the PRAS40/TORC1 axis to mesangial cell hypertrophy. Cellular Signalling, 2011, 23, 1311-1319.	3.6	40
51	MicroRNA-21 Orchestrates High Glucose-induced Signals to TOR Complex 1, Resulting in Renal Cell Pathology in Diabetes. Journal of Biological Chemistry, 2011, 286, 25586-25603.	3.4	198
52	The complex world of kidney microRNAs. Kidney International, 2011, 80, 334-337.	5.2	31
53	Ribosomal biogenesis induction by high glucose requires activation of upstream binding factor in kidney glomerular epithelial cells. American Journal of Physiology - Renal Physiology, 2011, 300, F219-F230.	2.7	31
54	Resveratrol ameliorates high glucose-induced protein synthesis in glomerular epithelial cells. Cellular Signalling, 2010, 22, 65-70.	3.6	42

#	Article	IF	CITATIONS
55	Acute hyperglycemia rapidly stimulates VEGF mRNA translation in the kidney. Role of angiotensin type 2 receptor (AT2). Cellular Signalling, 2010, 22, 1849-1857.	3.6	23
56	TGFβ enforces activation of eukaryotic elongation factorâ€⊋ (eEF2) via inactivation of eEF2 kinase by p90 ribosomal S6 kinase (p90Rsk) to induce mesangial cell hypertrophy. FEBS Letters, 2010, 584, 4268-4272.	2.8	19
57	PRAS40 acts as a nodal regulator of high glucoseâ€induced TORC1 activation in glomerular mesangial cell hypertrophy. Journal of Cellular Physiology, 2010, 225, 27-41.	4.1	43
58	AMP-activated Protein Kinase (AMPK) Negatively Regulates Nox4-dependent Activation of p53 and Epithelial Cell Apoptosis in Diabetes. Journal of Biological Chemistry, 2010, 285, 37503-37512.	3.4	222
59	HIV-Associated Nephropathy. American Journal of Pathology, 2010, 177, 813-821.	3.8	37
60	TSC2 Deficiency Increases PTEN via HIF1α. Journal of Biological Chemistry, 2009, 284, 27790-27798.	3.4	26
61	Regulation of mRNA translation in renal physiology and disease. American Journal of Physiology - Renal Physiology, 2009, 297, F1153-F1165.	2.7	52
62	Novel mechanisms of protein synthesis in diabetic nephropathy—role of mRNA translation. Reviews in Endocrine and Metabolic Disorders, 2008, 9, 255-266.	5.7	18
63	Raptor-rictor axis in TGFÎ ² -induced protein synthesis. Cellular Signalling, 2008, 20, 409-423.	3.6	60
64	Resveratrol inhibits PDGF receptor mitogenic signaling in mesangial cells: role of PTP1B. FASEB Journal, 2008, 22, 3469-3482.	0.5	35
65	Glycogen Synthase Kinase 3β Is a Novel Regulator of High Glucose- and High Insulin-induced Extracellular Matrix Protein Synthesis in Renal Proximal Tubular Epithelial Cells. Journal of Biological Chemistry, 2008, 283, 30566-30575.	3.4	63
66	High Glucose, High Insulin, and Their Combination Rapidly Induce Laminin-β1 Synthesis by Regulation of mRNA Translation in Renal Epithelial Cells. Diabetes, 2007, 56, 476-485.	0.6	71
67	A role for AMP-activated protein kinase in diabetes-induced renal hypertrophy. American Journal of Physiology - Renal Physiology, 2007, 292, F617-F627.	2.7	253
68	Regulation of Elongation Phase of mRNA Translation in Diabetic Nephropathy. American Journal of Pathology, 2007, 171, 1733-1742.	3.8	114
69	Angiotensin II stimulation of VEGF mRNA translation requires production of reactive oxygen species. American Journal of Physiology - Renal Physiology, 2006, 290, F927-F936.	2.7	68
70	mRNA Translation. Journal of the American Society of Nephrology: JASN, 2006, 17, 3281-3292.	6.1	56
71	mRNA Translation in Diabetic Nephropathy. , 2006, , 97-116.		3
72	Translational regulation of vascular endothelial growth factor expression in renal epithelial cells by angiotensin II. American Journal of Physiology - Renal Physiology, 2005, 288, F521-F529.	2.7	45

#	Article	IF	CITATIONS
73	Phospholipase CÎ ³ -Erk Axis in Vascular Endothelial Growth Factor-induced Eukaryotic Initiation Factor 4E Phosphorylation and Protein Synthesis in Renal Epithelial Cells. Journal of Biological Chemistry, 2005, 280, 28402-28411.	3.4	26
74	Vascular endothelial growth factor induces protein synthesis in renal epithelial cells: A potential role in diabetic nephropathy11See Editorial by Ziyadeh and Wolf, p. 758 Kidney International, 2003, 64, 468-479.	5.2	65
75	The type 2 vascular endothelial growth factor receptor recruits insulin receptor substrate-1 in its signalling pathway. Biochemical Journal, 2002, 368, 49-56.	3.7	32
76	Regulation of protein synthesis by IGF-I in proximal tubular epithelial cells. American Journal of Physiology - Renal Physiology, 2002, 283, F1226-F1236.	2.7	35
77	Angiotensin II and growth factors in the pathogenesis of diabetic nephropathy. Kidney International, 2002, 62, S8-S11.	5.2	55
78	Angiotensin II inhibits insulin-stimulated phosphorylation of eukaryotic initiation factor 4E-binding protein-1 in proximal tubular epithelial cells. Biochemical Journal, 2001, 360, 87.	3.7	15
79	Angiotensin II inhibits insulin-stimulated phosphorylation of eukaryotic initiation factor 4E-binding protein-1 in proximal tubular epithelial cells. Biochemical Journal, 2001, 360, 87-95.	3.7	26
80	Insulin regulation of protein translation repressor 4E-BP1, an eIF4E-binding protein, in renal epithelial cells. Kidney International, 2001, 59, 866-875.	5.2	73
81	Activation of renal signaling pathways in db/db mice with type 2 diabetes. Kidney International, 2001, 60, 495-504.	5.2	94
82	Regulation of Renal Laminin in Mice with Type II Diabetes. Journal of the American Society of Nephrology: JASN, 1999, 10, 1931-1939.	6.1	44