
Julien Ochala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5438625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PGCâ€lα regulates myonuclear accretion after moderate endurance training. Journal of Cellular Physiology, 2022, 237, 696-705.	4.1	6
2	Candidate gene expression and coding sequence variants in Warmblood horses with myofibrillar myopathy. Equine Veterinary Journal, 2021, 53, 306-315.	1.7	7
3	Methodological considerations in measuring specific force in human single skinned muscle fibres. Acta Physiologica, 2021, 233, e13719.	3.8	16
4	Can we talk about myoblast fusion?. American Journal of Physiology - Cell Physiology, 2021, 321, C504-C506.	4.6	1
5	Myofibre Hyper-Contractility in Horses Expressing the Myosin Heavy Chain Myopathy Mutation, MYH1E321G. Cells, 2021, 10, 3428.	4.1	13
6	Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nature Communications, 2020, 11, 6287.	12.8	57
7	rAAV-related therapy fully rescues myonuclear and myofilament function in X-linked myotubular myopathy. Acta Neuropathologica Communications, 2020, 8, 167.	5.2	12
8	Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathologica Communications, 2020, 8, 18.	5.2	7
9	Using nuclear envelope mutations to explore age-related skeletal muscle weakness. Clinical Science, 2020, 134, 2177-2187.	4.3	15
10	Physiological impact and disease reversion for the severe form of centronuclear myopathy linked to dynamin. JCI Insight, 2020, 5, .	5.0	16
11	Effect of PGC1-beta ablation on myonuclear organisation. Journal of Muscle Research and Cell Motility, 2019, 40, 335-341.	2.0	0
12	Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy. Acta Neuropathologica, 2019, 138, 477-495.	7.7	25
13	SIRT1 regulates nuclear number and domain size in skeletal muscle fibers. Journal of Cellular Physiology, 2018, 233, 7157-7163.	4.1	26
14	Congenital myopathies: disorders of excitation–contraction coupling and muscle contraction. Nature Reviews Neurology, 2018, 14, 151-167.	10.1	212
15	Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and TgACTA1D286G nemaline myopathy mice. Human Molecular Genetics, 2018, 27, 638-648.	2.9	27
16	Molecular Consequences of the Myopathy-Related D286G Mutation on Actin Function. Frontiers in Physiology, 2018, 9, 1756.	2.8	6
17	Reducing dynamin 2 (DNM2) rescues <i>DNM2</i> -related dominant centronuclear myopathy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11066-11071.	7.1	50
18	Defining the contribution of skeletal muscle pyruvate dehydrogenase α1 to exercise performance and insulin action. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E1034-E1045.	3.5	15

JULIEN OCHALA

#	Article	IF	CITATIONS
19	Prelamin A causes aberrant myonuclear arrangement and results in muscle fiber weakness. JCI Insight, 2018, 3, .	5.0	19
20	Exploring the Role of PGCâ€1α in Defining Nuclear Organisation in Skeletal Muscle Fibres. Journal of Cellular Physiology, 2017, 232, 1270-1274.	4.1	18
21	Current and future therapeutic approaches to the congenital myopathies. Seminars in Cell and Developmental Biology, 2017, 64, 191-200.	5.0	29
22	Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 1453-1458.	3.8	18
23	The Actin F352S Nemaline Myopathy Mutation Disrupts Indirect Flight Muscle Structure and Function in Drosophila. Biophysical Journal, 2016, 110, 128a.	0.5	0
24	Novel myosin-based therapies for congenital cardiac and skeletal myopathies. Journal of Medical Genetics, 2016, 53, 651-654.	3.2	11
25	Dystrophin restoration therapy improves both the reduced excitability and the force drop induced by lengthening contractions in dystrophic mdx skeletal muscle. Skeletal Muscle, 2016, 6, 23.	4.2	28
26	Modulating myosin restores muscle function in a mouse model of nemaline myopathy. Annals of Neurology, 2016, 79, 717-725.	5.3	22
27	Tropomodulin 1 directly controls thin filament length in both wild-type and tropomodulin 4-deficient skeletal muscle. Journal of Cell Science, 2016, 129, e1.2-e1.2.	2.0	2
28	X-ray recordings reveal how a human disease-linked skeletal muscle α-actin mutation leads to contractile dysfunction. Journal of Structural Biology, 2015, 192, 331-335.	2.8	10
29	Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca ²⁺ leak after one session of high-intensity interval exercise. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15492-15497.	7.1	132
30	Aberrant post-translational modifications compromise human myosin motor function in old age. Aging Cell, 2015, 14, 228-235.	6.7	49
31	Tropomodulin1 directly controls thin filament length in both wild-type and tropomodulin4-deficient skeletal muscle. Development (Cambridge), 2015, 142, 4351-62.	2.5	25
32	Skeletal Muscle: A Brief Review of Structure and Function. Calcified Tissue International, 2015, 96, 183-195.	3.1	860
33	Pointedâ€end capping by tropomodulin modulates actomyosin crossbridge formation in skeletal muscle fibers. FASEB Journal, 2014, 28, 408-415.	0.5	14
34	Sexually dimorphic myofilament function in a mouse model of nemaline myopathy. Archives of Biochemistry and Biophysics, 2014, 564, 37-42.	3.0	2
35	Myofilament lattice structure in presence of a skeletal myopathy-related tropomyosin mutation. Journal of Muscle Research and Cell Motility, 2013, 34, 171-175.	2.0	4
36	Sparing of muscle mass and function by passive loading in an experimental intensive care unit model. Journal of Physiology, 2013, 591, 1385-1402.	2.9	48

JULIEN OCHALA

#	Article	IF	CITATIONS
37	The fraction of strongly bound cross-bridges is increased in mice that carry the myopathy-linked myosin heavy chain mutation MYH4L342Q. DMM Disease Models and Mechanisms, 2013, 6, 834-40.	2.4	5
38	Skeletal and cardiac α-actin isoforms differently modulate myosin cross-bridge formation and myofibre force production. Human Molecular Genetics, 2013, 22, 4398-4404.	2.9	13
39	Distinct Underlying Mechanisms of Limb and Respiratory Muscle Fiber Weaknesses in Nemaline Myopathy. Journal of Neuropathology and Experimental Neurology, 2013, 72, 472-481.	1.7	30
40	Myofibrillar myopathy caused by a mutation in the motor domain of mouse MyHC IIb. Human Molecular Genetics, 2012, 21, 1706-1724.	2.9	15
41	Congenital myopathy-causing tropomyosin mutations induce thin filament dysfunction via distinct physiological mechanisms. Human Molecular Genetics, 2012, 21, 4473-4485.	2.9	45
42	Thick and Thin Filament Proteins. , 2012, , 1023-1030.		5
43	Impaired Adaptive Response to Mechanical Overloading in Dystrophic Skeletal Muscle. PLoS ONE, 2012, 7, e35346.	2.5	25
44	Nemaline Myopathy-Related Skeletal Muscle α-Actin (ACTA1) Mutation, Asp286Gly, Prevents Proper Strong Myosin Binding and Triggers Muscle Weakness. PLoS ONE, 2012, 7, e45923.	2.5	27
45	A myopathy-related actin mutation increases contractile function. Acta Neuropathologica, 2012, 123, 739-746.	7.7	15
46	Preferential skeletal muscle myosin loss in response to mechanical silencing in a novel rat intensive care unit model: underlying mechanisms. Journal of Physiology, 2011, 589, 2007-2026.	2.9	112
47	Relationship between force and size in human single muscle fibres. Experimental Physiology, 2011, 96, 539-547.	2.0	43
48	Disrupted myosin crossâ€bridge cycling kinetics triggers muscle weakness in nebulinâ€related myopathy. FASEB Journal, 2011, 25, 1903-1913.	0.5	51
49	Mechanisms underlying the sparing of masticatory versus limb muscle function in an experimental critical illness model. Physiological Genomics, 2011, 43, 1334-1350.	2.3	30
50	Diaphragm Muscle Weakness in an Experimental Porcine Intensive Care Unit Model. PLoS ONE, 2011, 6, e20558.	2.5	42
51	Factors Underlying the Early Limb Muscle Weakness in Acute Quadriplegic Myopathy Using an Experimental ICU Porcine Model. PLoS ONE, 2011, 6, e20876.	2.5	34
52	EMD 57033 partially reverses ventilator-induced diaphragm muscle fibre calcium desensitisation. Pflugers Archiv European Journal of Physiology, 2010, 459, 475-483.	2.8	16
53	A myopathy-linked tropomyosin mutation severely alters thin filament conformational changes during activation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9807-9812.	7.1	42
54	Ca2+ sensitizers: An emerging class of agents for counterbalancing weakness in skeletal muscle diseases?. Neuromuscular Disorders, 2010, 20, 98-101.	0.6	21

JULIEN OCHALA

#	Article	IF	CITATIONS
55	Myosin loss and muscle wasting in an experimental ICU model: Underlying mechanisms. FASEB Journal, 2010, 24, 1046.3.	0.5	0
56	Gene expression and muscle fiber function in a porcine ICU model. Physiological Genomics, 2009, 39, 141-159.	2.3	45
57	Maintenance of muscle mass, fiber size, and contractile function in mice lacking the Z-disc protein myotilin. Upsala Journal of Medical Sciences, 2009, 114, 235-241.	0.9	10
58	Thin filament proteins mutations associated with skeletal myopathies: Defective regulation of muscle contraction. Journal of Molecular Medicine, 2008, 86, 1197-1204.	3.9	63
59	Effects of a preferential myosin loss on Ca ²⁺ activation of force generation in single human skeletal muscle fibres. Experimental Physiology, 2008, 93, 486-495.	2.0	32
60	Defective regulation of contractile function in muscle fibres carrying an E41K βâ€ŧropomyosin mutation. Journal of Physiology, 2008, 586, 2993-3004.	2.9	49
61	Tropomyosin mutations responsible for muscle weakness in inherited skeletal muscle diseases. , 2008, , 20-21.		0
62	Single Skeletal Muscle Fiber Elastic and Contractile Characteristics in Young and Older Men. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 375-381.	3.6	114
63	Effects of a R133W β-tropomyosin mutation on regulation of muscle contraction in single human muscle fibres. Journal of Physiology, 2007, 581, 1283-1292.	2.9	46
64	Changes in muscle and joint elasticity following long-term strength training in old age. European Journal of Applied Physiology, 2007, 100, 491-498.	2.5	16
65	Single skeletal muscle fiber behavior after a quick stretch in young and older men: a possible explanation of the relative preservation of eccentric force in old age. Pflugers Archiv European Journal of Physiology, 2006, 452, 464-470.	2.8	39
66	Effect of strength training on musculotendinous stiffness in elderly individuals. European Journal of Applied Physiology, 2005, 94, 126-133.	2.5	19
67	Gender Differences in Human Muscle and Joint Mechanical Properties During Plantar Flexion in Old Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B441-B448.	3.6	10
68	Changes in mechanical properties of human plantar flexor muscles in ageing. Experimental Gerontology, 2004, 39, 349-358.	2.8	63
69	The influence of ageing on the force–velocity–power characteristics of human elbow flexor muscles. Experimental Gerontology, 2003, 38, 387-395.	2.8	68