
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5438509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Meta-Learning Approach for Fast Personalization of Modality Translation Models in Wearable Physiological Sensing. IEEE Journal of Biomedical and Health Informatics, 2022, 26, 1516-1527.	6.3	2
2	Cuffless blood pressure monitoring from a wristband with calibration-free algorithms for sensing location based on bio-impedance sensor array and autoencoder. Scientific Reports, 2022, 12, 319.	3.3	35
3	Parametric Modeling of Human Wrist for Bioimpedance-Based Physiological Sensing. , 2022, , .		3
4	Continuous cuffless monitoring of arterial blood pressure via graphene bioimpedance tattoos. Nature Nanotechnology, 2022, 17, 864-870.	31.5	79
5	Transition-Aware Detection of Modes of Locomotion and Transportation Through Hierarchical Segmentation. IEEE Sensors Journal, 2021, 21, 3301-3313.	4.7	3
6	A Survey of Challenges and Opportunities in Sensing and Analytics for Risk Factors of Cardiovascular Disorders. ACM Transactions on Computing for Healthcare, 2021, 2, 1-42.	5.0	3
7	Non-Invasive Cardiac and Respiratory Activity Assessment From Various Human Body Locations Using Bioimpedance. IEEE Open Journal of Engineering in Medicine and Biology, 2021, 2, 210-217.	2.3	30
8	A Dynamically Reconfigurable ECG Analog Front-End With a 2.5× Data-Dependent Power Reduction. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 1066-1078.	4.0	8
9	Pulse Wave Modeling Using Bio-Impedance Simulation Platform Based on a 3D Time-Varying Circuit Model. IEEE Transactions on Biomedical Circuits and Systems, 2021, 15, 143-158.	4.0	8
10	An LQR-assisted control algorithm for an under-actuated in-pipe robot in water distribution systems. , 2021, , .		9
11	Facilitating Human Activity Data Annotation via Context-Aware Change Detection on Smartwatches. Transactions on Embedded Computing Systems, 2021, 20, 1-20.	2.9	5
12	Exploiting Pull-In/Pull-Out Hysteresis in Electrostatic MEMS Sensor Networks to Realize a Novel Sensing Continuous-Time Recurrent Neural Network. Micromachines, 2021, 12, 268.	2.9	12
13	Data-driven Context Detection Leveraging Passively Sensed Nearables for Recognizing Complex Activities of Daily Living. ACM Transactions on Computing for Healthcare, 2021, 2, 1-22.	5.0	2
14	Design, Characterization, and Control of a Size Adaptable In-pipe Robot for Water Distribution Systems. , 2021, , .		10
15	Power-Aware Heart Rate Monitoring using Particle Filters. , 2021, , .		0
16	Simulation for a Mems-Based CTRNN Ultra-Low Power Implementation of Human Activity Recognition. Frontiers in Digital Health, 2021, 3, 731076.	2.8	2
17	The Applied Signal Processing Systems Technical Committee [In the Spotlight]. IEEE Signal Processing Magazine, 2021, 38, 137-139.	5.6	1

18 Signal Classification Using a Mechanically Coupled MEMS Neural Network. , 2021, , .

#	Article	IF	CITATIONS
19	A Graph-based Method for Interbeat Interval and Heart Rate Variability Estimation Featuring Multichannel PPG Signals During Intensive Activity. , 2021, , .		0
20	Real-time Signal-to-Noise Ratio Optimization of Bio-Impedance Signal for Cuffless Blood Pressure Monitoring. , 2021, 2021, 7480-7484.		0
21	A Non-invasive Radial Arterial Compliance Measuring Method using Bio-Impedance. , 2021, 2021, 2330-2334.		2
22	Personalizing Activity Recognition Models Through Quantifying Different Types of Uncertainty Using Wearable Sensors. IEEE Transactions on Biomedical Engineering, 2020, 67, 2530-2541.	4.2	35
23	Robust Interbeat Interval and Heart Rate Variability Estimation Method From Various Morphological Features Using Wearable Sensors. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2238-2250.	6.3	18
24	Colocalized Sensing and Intelligent Computing in Micro-Sensors. Sensors, 2020, 20, 6346.	3.8	13
25	A Wrist-worn Respiration Monitoring Device using Bio-Impedance. , 2020, 2020, 3989-3993.		9
26	Multi-source Multi-frequency Bio-impedance Measurement Method for Localized Pulse Wave Monitoring. , 2020, 2020, 3945-3948.		2
27	Strategic Attention Learning for Modality Translation. , 2020, , .		1
28	ImpediBands: Body Coupled Bio-Impedance Patches for Physiological Sensing Proof of Concept. IEEE Transactions on Biomedical Circuits and Systems, 2020, 14, 757-774.	4.0	23
29	Using Intelligent Personal Annotations to Improve Human Activity Recognition for Movements in Natural Environments. IEEE Journal of Biomedical and Health Informatics, 2020, 24, 2639-2650.	6.3	6
30	Machine Learning Augmentation in Micro-Sensor Assemblies. , 2020, , .		0
31	Developing Personalized Models of Blood Pressure Estimation from Wearable Sensors Data Using Minimally-trained Domain Adversarial Neural Networks. Proceedings of Machine Learning Research, 2020, 126, 97-120.	0.3	2
32	Noninvasive Cuffless Blood Pressure Estimation Using Pulse Transit Time and Impedance Plethysmography. IEEE Transactions on Biomedical Engineering, 2019, 66, 967-976.	4.2	111
33	Orientation Independent Activity/Gesture Recognition Using Wearable Motion Sensors. IEEE Internet of Things Journal, 2019, 6, 1427-1437.	8.7	48
34	A human-centered wearable sensing platform with intelligent automated data annotation capabilities. , 2019, , .		12
35	Fusion of Video and Inertial Sensing for Deep Learning–Based Human Action Recognition. Sensors, 2019, 19, 3680.	3.8	46
36	Cuffless Blood Pressure Monitoring from an Array of Wrist Bio-Impedance Sensors Using Subject-Specific Regression Models: Proof of Concept. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1723-1735.	4.0	77

#	Article	IF	CITATIONS
37	An Autoencoder-based Approach for Recognizing Null Class in Activities of Daily Living In-the-wild via Wearable Motion Sensors. , 2019, , .		7
38	Guest Editorial Special Issue on Wearable Sensor-Based Big Data Analysis for Smart Health. IEEE Internet of Things Journal, 2019, 6, 1293-1297.	8.7	4
39	Tagging wearable accelerometers in camera frames through information translation between vision sensors and accelerometers. , 2019, , .		0
40	Transferring activity recognition models for new wearable sensors with deep generative domain adaptation. , 2019, , .		35
41	Guest Editorial Special Issue on Next-Generation Smart Body Sensor Networks: From Autonomic Body Sensors to Cognitive Body Sensor Network Ecosystems. IEEE Sensors Journal, 2019, 19, 8370-8370.	4.7	1
42	A Deep Learning Assisted Method for Measuring Uncertainty in Activity Recognition with Wearable Sensors. , 2019, , .		5
43	Effects of Bio-Impedance Sensor Placement Relative to the Arterial Sites for Capturing Hemodynamic Parameters. , 2019, 2019, 6569-6573.		7
44	Electrical Characterization of Graphene-based e-Tattoos for Bio-Impedance-based Physiological Sensing. , 2019, , .		17
45	Measurement of Chest Physiological Signals using Wirelessly Coupled Bio-Impedance Patches. , 2019, 2019, 376-381.		11
46	Robust Heart Rate Variability and Interbeat Interval Detection Algorithm in the Presence of Motion Artifacts. , 2019, , .		2
47	Bio-impedance Simulation Platform using 3D Time-Varying Impedance Grid for Arterial Pulse Wave Modeling. , 2019, , .		6
48	Particle Filtering and Sensor Fusion for Robust Heart Rate Monitoring Using Wearable Sensors. IEEE Journal of Biomedical and Health Informatics, 2018, 22, 1834-1846.	6.3	48
49	A robust user interface for IoT using context-aware Bayesian fusion. , 2018, , .		3
50	A Decision Level Fusion and Signal Analysis Technique for Activity Segmentation and Recognition on Smart Phones. , 2018, , .		7
51	Continuous Blood Pressure Monitoring using Wrist-worn Bio-impedance Sensors with Wet Electrodes. , 2018, 2018, .		22
52	Hierarchical Signal Segmentation and Classification for Accurate Activity Recognition. , 2018, , .		19
53	A Survey on Smart Homes for Aging in Place: Toward Solutions to the Specific Needs of the Elderly. IEEE Signal Processing Magazine, 2018, 35, 111-119.	5.6	24
54	An Accurate Bioimpedance Measurement System for Blood Pressure Monitoring. Sensors, 2018, 18, 2095.	3.8	51

3

#	Article	IF	CITATIONS
55	A survey of depth and inertial sensor fusion for human action recognition. Multimedia Tools and Applications, 2017, 76, 4405-4425.	3.9	261
56	A 3-bit digitally operated MEMS rotational accelerometer. , 2017, , .		0
57	Weighted fusion of depth and inertial data to improve view invariance for real-time human action recognition. , 2017, , .		1
58	Data-Driven Synchronization for Internet-of-Things Systems. Transactions on Embedded Computing Systems, 2017, 16, 1-24.	2.9	14
59	Urban heartbeat: From modelling to applications. , 2017, , .		0
60	Modeling and detecting student attention and interest level using wearable computers. , 2017, , .		15
61	Automatic noise estimation and context-enhanced data fusion of IMU and Kinect for human motion measurement. , 2017, , .		5
62	Validation of a New Model-Free Signal Processing Method for Gait Feature Extraction Using Inertial Measurement Units to Diagnose and Quantify the Severity of Parkinson's Disease. , 2017, , .		1
63	A dynamically reconfigurable ECG analog front-end with a 2.5 $\tilde{A}-$ data-dependent power reduction. , 2017, , .		7
64	Wearable Computers for Sign Language Recognition. Scalable Computing and Communications, 2017, , 379-401.	0.5	3
65	Seamless Vision-assisted Placement Calibration for Wearable Inertial Sensors. Transactions on Embedded Computing Systems, 2017, 16, 1-22.	2.9	4
66	Smart Watches for Physiological Monitoring: A Case Study on Blood Pressure Measurement. , 2017, , 231-252.		0
67	Design and parametric analysis of a wearable dual-photoplethysmograph based system for pulse wave velocity detection. , 2017, , .		1
68	Exploration and validation of alternate sensing methods for wearable continuous pulse transit time measurement using optical and bioimpedance modalities. , 2017, 2017, 2051-2055.		7
69	Bio-impedance spectroscopy (BIS) measurement system for wearable devices. , 2017, , .		24
70	A novel method for pulse transit time estimation using wrist bio-impedance sensing based on a regression model. , 2017, , .		16
71	Real-time continuous action detection and recognition using depth images and inertial signals. , 2017, , .		11

Ultra-low power self-computing binary output digital MEMS accelerometer. , 2016, , .

#	Article	IF	CITATIONS
73	MotionSynthesis Toolset (MoST): An Open Source Tool and Data Set for Human Motion Data Synthesis and Validation. IEEE Sensors Journal, 2016, 16, 5365-5375.	4.7	10
74	Guest Editorial Sensor Informatics for Managing Mental Health. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 975-976.	6.3	0
75	A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG Sensors. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1281-1290.	6.3	202
76	A Hardware-Assisted Energy-Efficient Processing Model for Activity Recognition Using Wearables. ACM Transactions on Design Automation of Electronic Systems, 2016, 21, 1-27.	2.6	15
77	Ultra-Low Power Digitally Operated Tunable MEMS Accelerometer. IEEE Sensors Journal, 2016, 16, 8715-8721.	4.7	21
78	Fusion of depth, skeleton, and inertial data for human action recognition. , 2016, , .		50
79	Automatic Identification of Artifact-Related Independent Components for Artifact Removal in EEG Recordings. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 73-81.	6.3	76
80	A Real-Time Human Action Recognition System Using Depth and Inertial Sensor Fusion. IEEE Sensors Journal, 2016, 16, 773-781.	4.7	137
81	Inertial Measurement Unit-Based Wearable Computers for Assisted Living Applications: A signal processing perspective. IEEE Signal Processing Magazine, 2016, 33, 28-35.	5.6	65
82	BioWatch: A Noninvasive Wrist-Based Blood Pressure Monitor That Incorporates Training Techniques for Posture and Subject Variability. IEEE Journal of Biomedical and Health Informatics, 2016, 20, 1291-1300.	6.3	122
83	A tunable digitally operated MEMS accelerometer. , 2015, , .		4
84	A data-driven synchronization technique for cyber-physical systems. , 2015, , .		7
85	Digitally assisted analog front-end power management strategy via dynamic reconfigurability for robust heart rate monitoring. ACM SIGBED Review, 2015, 12, 36-39.	1.8	4
86	Guest Editorial : Special Issue on Internet of Things for Smart and Connected Health. IEEE Internet of Things Journal, 2015, 2, 1-4.	8.7	11
87	An ECG dataset representing real-world signal characteristics for wearable computers. , 2015, , .		8
88	Exploration of interactions detectable by wearable IMU sensors. , 2015, , .		3
89	Constructing energy expenditure regression model using heart rate with reduced training time. , 2015, 2015, 6566-9.		3
90	Robust heart rate estimation using wrist-based PPG signals in the presence of intense physical		26

activities., 2015, 2015, 8078-82.

#	Article	IF	CITATIONS
91	A case study on minimum energy operation for dynamic time warping signal processing in wearable computers. , 2015, , .		6
92	Time-varying and simultaneous frequency stimulation for multi-class SSVEP-based brain-computer interface. , 2015, 2015, 1757-60.		2
93	UTD-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. , 2015, , .		427
94	Improving Human Action Recognition Using Fusion of Depth Camera and Inertial Sensors. IEEE Transactions on Human-Machine Systems, 2015, 45, 51-61.	3.5	221
95	Context-Aware Data Processing to Enhance Quality of Measurements in Wireless Health Systems: An Application to MET Calculation of Exergaming Actions. IEEE Internet of Things Journal, 2015, 2, 84-93.	8.7	16
96	Multi-sensor data-driven. , 2015, , .		6
97	Action Recognition from Depth Sequences Using Depth Motion Maps-Based Local Binary Patterns. , 2015, , .		145
98	Real-time American Sign Language Recognition using wrist-worn motion and surface EMG sensors. , 2015, , .		57
99	A particle filter framework for the estimation of heart rate from ECG signals corrupted by motion artifacts. , 2015, 2015, 6560-5.		13
100	Design Principles and Dynamic Front End Reconfiguration for Low Noise EEG Acquisition With Finger Based Dry Electrodes. IEEE Transactions on Biomedical Circuits and Systems, 2015, 9, 631-640.	4.0	27
101	Power-Aware Communication in Body Area Networks. Rehabilitation Science in Practice Series, 2015, , 203-224.	0.0	0
102	A medication adherence monitoring system for pill bottles based on a wearable inertial sensor. , 2014, 2014, 4983-6.		57
103	Robust activity recognition using wearable IMU sensors. , 2014, , .		5
104	Reducing the noise level of EEG signal acquisition through reconfiguration of dry contact electrodes. , 2014, , .		6
105	SmartHealthSys 2014. , 2014, , .		0
106	Zero-Effort Camera-Assisted Calibration Techniques for Wearable Motion Sensors. , 2014, 2014, .		2
107	MotionSynthesis toolset (MoST). , 2014, , .		20
108	Home-based Senior Fitness Test measurement system using collaborative inertial and depth sensors. , 2014, 2014, 4135-8.		29

#	Article	IF	CITATIONS
109	Power-Aware Activity Monitoring Using Distributed Wearable Sensors. IEEE Transactions on Human-Machine Systems, 2014, 44, 537-544.	3.5	68
110	Automatic removal of EEG artifacts using electrode-scalp impedance. , 2014, , .		5
111	Multi-HMM classification for hand gesture recognition using two differing modality sensors. , 2014, ,		22
112	Characterizing contact impedance, signal quality and robustness as a function of the cardinality and arrangement of fingers on dry contact EEG electrodes. , 2014, 2014, 3755-8.		3
113	A novel stimulation for multi-class SSVEP-based brain-computer interface using patterns of time-varying frequencies. , 2014, 2014, 118-21.		8
114	BioWatch — A wrist watch based signal acquisition system for physiological signals including blood pressure. , 2014, 2014, 2286-9.		36
115	Demonstration abstract: Upper body motion capture system using inertial sensors. , 2014, , .		2
116	Maximizing information transfer rates in an SSVEP-based BCI using individualized Bayesian probability measures. , 2014, 2014, 654-7.		4
117	BClBench. , 2014, , .		3
118	Demonstration abstract: BioWatch $\hat{a} \in$ " A wrist watch based physiological signal acquisition system. , 2014, , .		5
119	Motion Based Acceleration Correction for Improved Sensor Orientation Estimates. , 2014, , .		8
120	Mining Techniques for Body Sensor Network Data Repository. , 2014, , 383-407.		2
121	Fusion of Inertial and Depth Sensor Data for Robust Hand Gesture Recognition. IEEE Sensors Journal, 2014, 14, 1898-1903.	4.7	122
122	The Swarm at the Edge of the Cloud. IEEE Design and Test, 2014, 31, 8-20.	1.2	83
123	Enabling Effective Programming and Flexible Management of Efficient Body Sensor Network Applications. IEEE Transactions on Human-Machine Systems, 2013, 43, 115-133.	3.5	377
124	An extended Kalman filter to estimate human gait parameters and walking distance. , 2013, 2013, 752-757.		18
125	Low-voltage low-overhead asynchronous logic. , 2013, , .		2

#	Article	IF	CITATIONS
127	An Ultra-Low Power Hardware Accelerator Architecture for Wearable Computers Using Dynamic Time Warping. , 2013, , .		8
128	Introduction to the special section on wireless health systems. Transactions on Embedded Computing Systems, 2013, 12, 1-2.	2.9	0
129	Ultra low-power signal processing in wearable monitoring systems. Transactions on Embedded Computing Systems, 2013, 13, 1-23.	2.9	29
130	A 16-channel bluetooth enabled wearable EEG platform with dry-contact electrodes for brain computer interface. , 2013, , .		13
131	The impact of vibrotactile biofeedback on the excessive walking sway and the postural control in elderly. , 2013, 2013, .		7
132	Low power programmable architecture for periodic activity monitoring. , 2013, , .		13
133	Score-based adaptive training for P300 speller Brain-Computer Interface. , 2013, , .		0
134	Immersive multiplayer tennis with microsoft kinect and body sensor networks. , 2012, , .		5
135	Impact of sensor misplacement on dynamic time warping based human activity recognition using wearable computers. , 2012, 2012, .		28
136	Automatic Segmentation and Recognition in Body Sensor Networks Using a Hidden Markov Model. Transactions on Embedded Computing Systems, 2012, 11, 1-19.	2.9	7
137	Automatic EEG artifact removal based on ICA and Hierarchical Clustering. , 2012, , .		10
138	Brain-Computer Interface Signal Processing Algorithms: A Computational Cost vs. Accuracy Analysis for Wearable Computers. , 2012, , .		14
139	From Modeling to Implementation of Virtual Sensors in Body Sensor Networks. IEEE Sensors Journal, 2012, 12, 583-593.	4.7	117
140	A Mining Technique Using \$N\$n-Grams and Motion Transcripts for Body Sensor Network Data Repository. Proceedings of the IEEE, 2012, 100, 107-121.	21.3	6
141	A wireless communication selection approach to minimize energy-per-bit for wearable computing applications. , 2011, , .		4
142	Coordination Analysis of Human Movements With Body Sensor Networks: A Signal Processing Model to Evaluate Baseball Swings. IEEE Sensors Journal, 2011, 11, 603-610.	4.7	86
143	Low Power Tiered Wake-up Module for Lightweight Embedded Systems Using Cross Correlation. , 2011, , ,		1
144	A Low Power Wake-Up Circuitry Based on Dynamic Time Warping for Body Sensor Networks. , 2011, , .		19

#	Article	IF	CITATIONS
145	Power Aware Wireless Data Collection for BSN Data Repositories. , 2011, , .		3
146	Physical Movement Monitoring Using Body Sensor Networks: A Phonological Approach to Construct Spatial Decision Trees. IEEE Transactions on Industrial Informatics, 2011, 7, 66-77.	11.3	80
147	Ultra Low Power Granular Decision Making Using Cross Correlation: Optimizing Bit Resolution for Template Matching. , 2011, , .		6
148	Light-weight single trial EEG signal processing algorithms: Computational profiling for low power design. , 2011, 2011, 4426-30.		10
149	Modeling human gait using a Kalman filter to measure walking distance. , 2011, , .		7
150	Power-aware action recognition with optimal sensor selection. , 2011, , .		6
151	Lightweight power aware and scalable movement monitoring for wearable computers. , 2011, , .		2
152	Rejection of irrelevant human actions in real-time hidden Markov model based recognition systems for wearable computers. , 2011, 2011, .		4
153	An Ultra Low Power Granular Decision Making Using Cross Correlation: Minimizing Signal Segments for Template Matching. , 2011, , .		3
154	Lightweight Signal Processing for Wearable Body Sensor Networks. , 2011, , 99-122.		0
155	A greedy buffer allocation algorithm for power-aware communication in body sensor networks. , 2010, , .		2
156	A Body Sensor Network With Electromyogram and Inertial Sensors: Multimodal Interpretation of Muscular Activities. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 198-206.	3.2	89
157	Structural Action Recognition in Body Sensor Networks: Distributed Classification Based on String Matching. IEEE Transactions on Information Technology in Biomedicine, 2010, 14, 425-435.	3.2	52
158	Spectral Spatio-Temporal template extraction from EEG signals. , 2010, 2010, 4678-82.		2
159	Towards power optimized kalman filter for gait assessment using wearable sensors. , 2010, , .		4
160	A mining technique using n-grams and motion transcripts for body sensor network data repository. , 2010, , .		2
161	Applications of sensing platforms with wearable computers. , 2010, , .		4

162 Collaborative signal processing for action recognition in body sensor networks. , 2010, , .

#	Article	IF	CITATIONS
163	Burst communication by means of buffer allocation in body sensor networks: Exploiting signal processing to reduce the number of transmissions. IEEE Journal on Selected Areas in Communications, 2010, 28, 1073-1082.	14.0	8
164	Body sensor networks for baseball swing training: Coordination analysis of human movements using motion transcripts. , 2010, , .		6
165	Data Aggregation in Body Sensor Networks: A Power Optimization Technique for Collaborative Signal Processing. , 2010, , .		13
166	Toward power optimization for communication failure recovery in Body Sensor Networks. , 2010, , .		0
167	Implementation of virtual sensors in body sensor networks with the SPINE framework. , 2009, , .		5
168	An efficient placement and routing technique for fault-tolerant distributed embedded computing. Transactions on Embedded Computing Systems, 2009, 8, 1-26.	2.9	0
169	Distributed Continuous Action Recognition Using a Hidden Markov Model in Body Sensor Networks. Lecture Notes in Computer Science, 2009, , 145-158.	1.3	21
170	A Method for Extracting Temporal Parameters Based on Hidden Markov Models in Body Sensor Networks With Inertial Sensors. IEEE Transactions on Information Technology in Biomedicine, 2009, 13, 1019-1030.	3.2	39
171	A motion sequence fusion technique based on PCA for activity analysis in body sensor networks. , 2009, 2009, 3146-9.		8
172	Energy-Efficient Information-Driven Coverage for Physical Movement Monitoring in Body Sensor Networks. IEEE Journal on Selected Areas in Communications, 2009, 27, 58-69.	14.0	40
173	Communication minimization for in-network processing in body sensor networks: A buffer assignment technique. , 2009, , .		10
174	A Distributed Hidden Markov Model for Fine-grained Annotation in Body Sensor Networks. , 2009, , .		16
175	Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments, 2009, 1, 103-115.	1.4	130
176	Wearable coach for sport training: A quantitative model to evaluate wrist-rotation in golf. Journal of Ambient Intelligence and Smart Environments, 2009, 1, 173-184.	1.4	43
177	Sport training using body sensor networks: a statistical approach to measure wrist rotation for golf swing. , 2009, , .		64
178	An Automatic Segmentation Technique in Body Sensor Networks based on Signal Energy. , 2009, , .		19
179	Reconfigurable Embedded Medical Systems. , 2009, , 228-240.		0

Body sensor networks for driver distraction identification. , 2008, , .

#	Article	IF	CITATIONS
181	QUANTIFIED DEEP TENDON REFLEX DEVICE, SECOND GENERATION. Journal of Mechanics in Medicine and Biology, 2008, 08, 75-85.	0.7	25
182	Locomotion monitoring using body sensor networks. , 2008, , .		9
183	Locomotion Monitoring Using Body Sensor Networks. , 2008, , .		4
184	Action coverage formulation for power optimization in body sensor networks. , 2008, , .		18
185	A phonological expression for physical movement monitoring in body sensor networks. , 2008, , .		32
186	Distributed segmentation and classification of human actions using a wearable motion sensor network. , 2008, , .		57
187	Body sensor networks and ultra wideband communication. , 2008, , .		2
188	Human identification by gait analysis. , 2008, , .		20
189	Body sensor networks to evaluate standing balance. , 2008, , .		21
190	CareNet: An Integrated Wireless Sensor Networking Environment for Remote Healthcare. , 2008, , .		88
191	A resource optimized physical movement monitoring scheme for environmental and on-body sensor networks. , 2007, , .		5
192	Platform Design for Health-Care Monitoring Applications. , 2007, , .		16
193	A Segmentation Technique Based on Standard Deviation in Body Sensor Networks. , 2007, , .		8
194	Physical Activity Monitoring for Assisted Living at Home. , 2007, , 213-219.		45
195	CMAS: Clinical movement assessment system for neuromotor disorders. , 2006, , .		3
196	Adaptive and fault tolerant medical vest for life-critical medical monitoring. , 2005, , .		36