Zhibin Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5438369/publications.pdf

Version: 2024-02-01

		516710	642732
50	887	16	23
papers	citations	h-index	g-index
50	50	50	665
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	Metrics for 3D Object Pointing and Manipulation in Virtual Reality: The Introduction and Validation of a Novel Approach in Measuring Human Performance. IEEE Robotics and Automation Magazine, 2022, 29, 76-91.	2.0	3
2	Learning Adaptive Grasping From Human Demonstrations. IEEE/ASME Transactions on Mechatronics, 2022, 27, 3865-3873.	5.8	3
3	Reachability Map for Diverse and Energy Efficient Stepping of Humanoids. IEEE/ASME Transactions on Mechatronics, 2022, , 1-11.	5 . 8	O
4	Learning Perceptual Locomotion on Uneven Terrains Using Sparse Visual Observations. IEEE Robotics and Automation Letters, 2022, 7, 8611-8618.	5.1	3
5	Robust Impedance Control for Dexterous Interaction Using Fractal Impedance Controller with IK-Optimisation. , 2022, , .		O
6	Accessibility-Based Clustering for Efficient Learning of Locomotion Skills. , 2022, , .		4
7	Trajectory adaptation of biomimetic equilibrium point for stable locomotion of a large-size hexapod robot. Autonomous Robots, 2021, 45, 155-174.	4.8	4
8	Trajectory Optimization of Contact-Rich Motions Using Implicit Differential Dynamic Programming. IEEE Robotics and Automation Letters, 2021, 6, 2626-2633.	5.1	16
9	The Challenges in Modeling Human Performance in 3D Space with Fitts' Law. , 2021, , .		15
10	Human hand movement recognition using infinite hidden Markov model based sEMG classification. Biomedical Signal Processing and Control, 2021, 68, 102592.	5.7	9
11	Robust High-Transparency Haptic Exploration for Dexterous Telemanipulation. , 2021, , .		5
12	Meta-Learning for Fast Adaptive Locomotion with Uncertainties in Environments and Robot Dynamics. , 2021, , .		3
13	Learning Pregrasp Manipulation of Objects from Ungraspable Poses. , 2020, , .		10
14	Unified Push Recovery Fundamentals: Inspiration from Human Study. , 2020, , .		4
15	Contact-Implicit Trajectory Optimization Using an Analytically Solvable Contact Model for Locomotion on Variable Ground. IEEE Robotics and Automation Letters, 2020, 5, 6357-6364.	5.1	19
16	Multi-expert learning of adaptive legged locomotion. Science Robotics, 2020, 5, .	17.6	104
17	Decoding Motor Skills of Artificial Intelligence and Human Policies: A Study on Humanoid and Human Balance Control. IEEE Robotics and Automation Magazine, 2020, 27, 87-101.	2.0	7
18	Force-Guided High-Precision Grasping Control of Fragile and Deformable Objects Using sEMG-Based Force Prediction. IEEE Robotics and Automation Letters, 2020, 5, 2762-2769.	5.1	25

#	Article	IF	Citations
19	Study of Multimodal Interfaces and the Improvements on Teleoperation. IEEE Access, 2020, 8, 78213-78227.	4.2	45
20	Learning Natural Locomotion Behaviors for Humanoid Robots Using Human Bias. IEEE Robotics and Automation Letters, 2020, 5, 2610-2617.	5.1	31
21	Optimisation of Body-ground Contact for Augmenting the Whole-Body Loco-manipulation of Quadruped Robots. , 2020, , .		15
22	Bayesian Optimization for Whole-Body Control of High-Degree-of-Freedom Robots Through Reduction of Dimensionality. IEEE Robotics and Automation Letters, 2019, 4, 2268-2275.	5.1	24
23	Learning Whole-Body Motor Skills for Humanoids. , 2018, , .		17
24	Nonlinear Optimization Using Discrete Variational Mechanics for Dynamic Maneuvers of a 3D One-Leg Hopper. , 2018, , .		3
25	An Improved Formulation for Model Predictive Control of Legged Robots for Gait Planning and Feedback Control. , 2018, , .		7
26	Humanoid Balancing Behavior Featured by Underactuated Foot Motion. IEEE Transactions on Robotics, 2017, 33, 298-312.	10.3	19
27	Overview of Gait Synthesis for the Humanoid COMAN. Journal of Bionic Engineering, 2017, 14, 15-25.	5.0	38
28	Emergence of human-comparable balancing behaviours by deep reinforcement learning. , 2017, , .		12
29	A generic optimization-based framework for reactive collision avoidance in bipedal locomotion. , 2016, , \cdot		13
30	Intensity Weighted Subtraction Microscopy Approach for Image Contrast and Resolution Enhancement. Scientific Reports, 2016, 6, 25816.	3.3	47
31	Dynamic and Reactive Walking for Humanoid Robots Based on Foot Placement Control. International Journal of Humanoid Robotics, 2016, 13, 1550041.	1.1	43
32	Development and Control of a Compliant Asymmetric Antagonistic Actuator for Energy Efficient Mobility. IEEE/ASME Transactions on Mechatronics, 2016, 21, 1080-1091.	5.8	43
33	Compliance control for stabilizing the humanoid on the changing slope based on terrain inclination estimation. Autonomous Robots, 2016, 40, 955-971.	4.8	19
34	Stabilization of bipedal walking based on compliance control. Autonomous Robots, 2016, 40, 1041-1057.	4.8	34
35	Design Optimisation and Control of Compliant Actuation Arrangements in Articulated Robots for Improved Energy Efficiency. IEEE Robotics and Automation Letters, 2016, 1, 1110-1117.	5.1	23
36	Exploiting the redundancy for humanoid robots to dynamically step over a large obstacle. , 2015, , .		9

#	Article	IF	CITATIONS
37	FOOT PLACEMENT CONTROL FOR BIPEDAL WALKING ON UNEVEN TERRAIN: AN ONLINE LINEAR REGRESSION ANALYSIS APPROACH., 2015, , .		4
38	Comparison study of two inverted pendulum models for balance recovery. , 2014, , .		8
39	Powered walking based on the passive dynamic principles: A virtual slope walking approach. , 2014, , .		0
40	A passivity based compliance stabilizer for humanoid robots. , 2014, , .		13
41	Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach., 2013,,.		34
42	Walking pattern generation for a humanoid robot with compliant joints. Autonomous Robots, 2013, 35, 1-14.	4.8	30
43	Optimal ankle compliance regulation for humanoid balancing control. , 2013, , .		8
44	Stabilizing humanoids on slopes using terrain inclination estimation., 2013,,.		7
45	Stabilization for the compliant humanoid robot COMAN exploiting intrinsic and controlled compliance. , 2012, , .		27
46	On Global Optimization of Walking Gaits for the Compliant Humanoid Robot, COMAN Using Reinforcement Learning. Cybernetics and Information Technologies, 2012, 12, 39-52.	1.1	10
47	A passivity based admittance control for stabilizing the compliant humanoid COMAN. , 2012, , .		45
48	Walking trajectory generation for humanoid robots with compliant joints: Experimentation with COMAN humanoid. , 2012, , .		8
49	Internal model control for improving the gait tracking of a compliant humanoid robot. , 2012, , .		4
50	Trajectory generation of straightened knee walking for humanoid robot iCub. , 2010, , .		13