Marco Tripodi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/543622/publications.pdf

Version: 2024-02-01

71102 5,950 120 41 citations h-index papers

73 g-index 121 121 121 9075 docs citations times ranked citing authors all docs

79698

#	Article	IF	CITATIONS
1	SYNCRIP Modulates the Epithelial-Mesenchymal Transition in Hepatocytes and HCC Cells. International Journal of Molecular Sciences, 2022, 23, 913.	4.1	6
2	Next RNA Therapeutics: The Mine of Non-Coding. International Journal of Molecular Sciences, 2022, 23, 7471.	4.1	34
3	Design and Functional Validation of a Mutant Variant of the LncRNA <i>HOTAIR</i> to Counteract Snail Function in Epithelial-to-Mesenchymal Transition. Cancer Research, 2021, 81, 103-113.	0.9	38
4	Mechanisms of Peritoneal Fibrosis: Focus on Immune Cells–Peritoneal Stroma Interactions. Frontiers in Immunology, 2021, 12, 607204.	4.8	47
5	A novel RNA- based approach to counteract EMT. Oncoscience, 2021, 8, 53-54.	2.2	2
6	The RNA editing enzyme ADAR2 restricts L1 mobility. RNA Biology, 2021, 18, 75-87.	3.1	3
7	Fibrogenic signals persist in DAA-treated HCV patients after sustained virological response. Journal of Hepatology, 2021, 75, 1301-1311.	3.7	15
8	Pleural Mesothelial Cells Modulate the Inflammatory/Profibrotic Response During SARS-CoV-2 Infection. Frontiers in Molecular Biosciences, 2021, 8, 752616.	3.5	6
9	Caveolin1 and YAP drive mechanically induced mesothelial to mesenchymal transition and fibrosis. Cell Death and Disease, 2020, 11, 647.	6.3	39
10	Hypoxia-Induced miR-675-5p Supports \hat{I}^2 -Catenin Nuclear Localization by Regulating GSK3- \hat{I}^2 \hat{A} Activity in Colorectal Cancer Cell Lines. International Journal of Molecular Sciences, 2020, 21, 3832.	4.1	17
11	Design of First-in-Class Dual EZH2/HDAC Inhibitor: Biochemical Activity and Biological Evaluation in Cancer Cells. ACS Medicinal Chemistry Letters, 2020, 11, 977-983.	2.8	49
12	Novel Quinoline Compounds Active in Cancer Cells through Coupled DNA Methyltransferase Inhibition and Degradation. Cancers, 2020, 12, 447.	3.7	8
13	YAP integrates the regulatory Snail/HNF4α circuitry controlling epithelial/hepatocyte differentiation. Cell Death and Disease, 2019, 10, 768.	6.3	28
14	TGFÎ ² Impairs HNF1α Functional Activity in Epithelial-to-Mesenchymal Transition Interfering With the Recruitment of CBP/p300 Acetyltransferases. Frontiers in Pharmacology, 2019, 10, 942.	3. 5	8
15	Identification of a novel quinoline-based DNA demethylating compound highly potent in cancer cells. Clinical Epigenetics, 2019, 11, 68.	4.1	30
16	The IncRNA HOTAIR transcription is controlled by HNF4α-induced chromatin topology modulation. Cell Death and Differentiation, 2019, 26, 890-901.	11.2	65
17	Development of alkyl glycerone phosphate synthase inhibitors: Structure-activity relationship and effects on ether lipids and epithelial-mesenchymal transition in cancer cells. European Journal of Medicinal Chemistry, 2019, 163, 722-735.	5.5	15
18	A cryptic RNA-binding domain mediates Syncrip recognition and exosomal partitioning of miRNA targets. Nature Communications, 2018, 9, 831.	12.8	86

#	Article	IF	Citations
19	Hepatitis C virus directâ€ecting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver International, 2018, 38, 1741-1750.	3.9	35
20	HDAC1 inhibition by MS-275 in mesothelial cells limits cellular invasion and promotes MMT reversal. Scientific Reports, 2018, 8, 8492.	3.3	23
21	SMO Inhibition Modulates Cellular Plasticity and Invasiveness in Colorectal Cancer. Frontiers in Pharmacology, 2018, 8, 956.	3. 5	27
22	SENP1 activity sustains cancer stem cell in hypoxic HCC. Gut, 2017, 66, 2051-2052.	12.1	10
23	Nonenzymatic Oligomerization of 3′,5′â€Cyclic CMP Induced by Proton and UV Irradiation Hints at a Nonfastidious Origin of RNA. ChemBioChem, 2017, 18, 1535-1543.	2.6	16
24	The Snail repressor recruits EZH2 to specific genomic sites through the enrollment of the lncRNA HOTAIR in epithelial-to-mesenchymal transition. Oncogene, 2017, 36, 942-955.	5.9	160
25	ADAR1 restricts LINE-1 retrotransposition. Nucleic Acids Research, 2017, 45, 155-168.	14.5	58
26	Iron overload down-regulates the expression of the HIV-1 Rev cofactor eIF5A in infected T lymphocytes. Proteome Science, 2017, 15, 18.	1.7	8
27	The laminA/NF-Y protein complex reveals an unknown transcriptional mechanism on cell proliferation. Oncotarget, 2017, 8, 2628-2646.	1.8	5
28	MiR-675-5p supports hypoxia induced epithelial to mesenchymal transition in colon cancer cells. Oncotarget, 2017, 8, 24292-24302.	1.8	44
29	Targeting of polycombs to DNA in EMT. Oncotarget, 2017, 8, 57936-57937.	1.8	4
30	Hepatitis C virus relies on lipoproteins for its life cycle. World Journal of Gastroenterology, 2016, 22, 1953.	3.3	47
31	Molecular Mechanisms Underlying Peritoneal EMT and Fibrosis. Stem Cells International, 2016, 2016, 1-11.	2.5	96
32	MiR675-5p Acts on HIF- $1\hat{l}_{\pm}$ to Sustain Hypoxic Responses: A New Therapeutic Strategy for Glioma. Theranostics, 2016, 6, 1105-1118.	10.0	45
33	Modulating the Substrate Stiffness to Manipulate Differentiation of Resident Liver Stem Cells and to Improve the Differentiation State of Hepatocytes. Stem Cells International, 2016, 2016, 1-12.	2.5	66
34	Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution. PLoS ONE, 2016, 11, e0151736.	2.5	174
35	TGFbeta Induces Binucleation/Polyploidization in Hepatocytes through a Src-Dependent Cytokinesis Failure. PLoS ONE, 2016, 11, e0167158.	2.5	15
36	The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting. Cell Reports, 2016, 17, 799-808.	6.4	438

#	Article	IF	Citations
37	SETDB1 is a new promising target in HCC therapy. Chinese Clinical Oncology, 2016, 5, 73-73.	1.2	1
38	New Tools for Molecular Therapy of Hepatocellular Carcinoma. Diseases (Basel, Switzerland), 2015, 3, 325-340.	2.5	9
39	Epigenetic control of EMT/MET dynamics: HNF4α impacts DNMT3s through miRs-29. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 919-929.	1.9	53
40	eIF6 over-expression increases the motility and invasiveness of cancer cells by modulating the expression of a critical subset of membrane-bound proteins. BMC Cancer, 2015, 15, 131.	2.6	30
41	CD90+ liver cancer cells modulate endothelial cell phenotype through the release of exosomes containing H19 lncRNA. Molecular Cancer, 2015, 14, 155.	19.2	363
42	Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation. Cell Death and Disease, 2015, 6, e1880-e1880.	6.3	96
43	Human cord blood-derived hemogenic endothelium generates mast cells. Blood Cells, Molecules, and Diseases, 2015, 54, 195-197.	1.4	0
44	Molecular mechanisms controlling the phenotype and the <scp>EMT</scp> / <scp>MET</scp> dynamics of hepatocyte. Liver International, 2015, 35, 302-310.	3.9	75
45	Spikeâ€in <scp>SILAC</scp> proteomic approach reveals the vitronectin as an early molecular signature of liver fibrosis in hepatitis <scp>C</scp> infections with hepatic iron overload. Proteomics, 2014, 14, 1107-1115.	2.2	13
46	Discovery of chemotherapy-associated ovarian cancer antigens by interrogating memory T cells. International Journal of Cancer, 2014, 134, 1823-1834.	5.1	19
47	SILAC labeling coupled to shotgun proteomics analysis of membrane proteins of liver stem/hepatocyte allows to candidate the inhibition of TGF-beta pathway as causal to differentiation. Proteome Science, 2014, 12, 15.	1.7	4
48	TGFβ overrides HNF4Î \pm tumor suppressing activity through GSK3β inactivation: implication for hepatocellular carcinoma gene therapy. Journal of Hepatology, 2013, 58, 65-72.	3.7	38
49	Evidence for a common progenitor of epithelial and mesenchymal components of the liver. Cell Death and Differentiation, 2013, 20, 1116-1123.	11.2	23
50	Applying proteomic technology to clinical virology. Clinical Microbiology and Infection, 2013, 19, 23-28.	6.0	20
51	Intrablastocyst injection with human CD34+/CD133+ cells increase survival of immunocompetent fumarylacetoacetate hydrolase knockout mice. Laboratory Animals, 2012, 46, 280-286.	1.0	1
52	Ferritin Heavy Chain Is the Host Factor Responsible for HCV-Induced Inhibition of apoB-100 Production and Is Required for Efficient Viral Infection. Journal of Proteome Research, 2012, 11, 2786-2797.	3.7	21
53	An epistatic mini-circuitry between the transcription factors Snail and HNF4 $\hat{l}\pm$ controls liver stem cell and hepatocyte features exhorting opposite regulation on stemness-inhibiting microRNAs. Cell Death and Differentiation, 2012, 19, 937-946.	11.2	43
54	Autophagy Protects Cells From HCV-Induced Defects in Lipid Metabolism. Gastroenterology, 2012, 142, 644-653.e3.	1.3	66

#	Article	IF	CITATIONS
55	Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium. PLoS ONE, 2012, 7, e51109.	2.5	23
56	Hepatitis C virus production requires apolipoprotein A-I and affects its association with nascent low-density lipoproteins. Gut, 2011, 60, 378-386.	12.1	67
57	The stable repression of mesenchymal program is required for hepatocyte identity: A novel role for hepatocyte nuclear factor 4α. Hepatology, 2011, 53, 2063-2074.	7.3	116
58	Determination of antituberculosis drug concentration in human plasma by MALDIâ€TOF/TOF. IUBMB Life, 2010, 62, 387-393.	3.4	11
59	Proteomic analysis reveals a major role for contact inhibition in the terminal differentiation of hepatocytes. Journal of Hepatology, 2010, 52, 234-243.	3.7	11
60	Activated VÎ ³ 9VÎ ² T Cells Trigger Granulocyte Functions via MCP-2 Release. Journal of Immunology, 2009, 182, 522-529.	0.8	35
61	Mitochondrial Localization of PARP-1 Requires Interaction with Mitofilin and Is Involved in the Maintenance of Mitochondrial DNA Integrity. Journal of Biological Chemistry, 2009, 284, 31616-31624.	3.4	139
62	Impaired interferon type I signalling in the liver modulates the hepatic acute phase response in hepatitis C virus transgenic mice. Journal of Hepatology, 2009, 51, 271-278.	3.7	6
63	Convergence of Wnt Signaling on the HNF4α-Driven Transcription in Controlling Liver Zonation. Gastroenterology, 2009, 137, 660-672.	1.3	122
64	Determination of abacavir, amprenavir, didanosine, efavirenz, nevirapine, and stavudine concentration in human plasma by MALDI-TOF/TOF. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008, 863, 249-257.	2.3	41
65	Isolation and characterization of a murine resident liver stem cell. Cell Death and Differentiation, 2008, 15, 123-133.	11.2	29
66	The Occurrence of the <i>psbS</i> Gene Product in <i>ChlamydomonasÂreinhardtii</i> and in Other Photosynthetic Organisms and Its Correlation with Energy Quenching ^{â€} . Photochemistry and Photobiology, 2008, 84, 1359-1370.	2.5	94
67	TGFÎ ² -induced EMT requires focal adhesion kinase (FAK) signaling. Experimental Cell Research, 2008, 314, 143-152.	2.6	226
68	ERK5/MAPK is activated by TGF \hat{l}^2 in hepatocytes and required for the GSK-3 \hat{l}^2 -mediated Snail protein stabilization. Cellular Signalling, 2008, 20, 2113-2118.	3.6	39
69	Elucidation of lipoprotein particles structure by proteomic analysis. Expert Review of Proteomics, 2008, 5, 91-104.	3.0	18
70	Hepatitis C virus core protein impairs in vitro priming of specific T cell responses by dendritic cells and hepatocytes. Journal of Hepatology, 2008, 48, 51-60.	3.7	45
71	The RNA-dependent RNA polymerase essential for post-transcriptional gene silencing in Neurospora crassa interacts with replication protein A. Nucleic Acids Research, 2008, 36, 532-538.	14.5	32
72	Hepatocyte-conditioned medium sustains endothelial differentiation of human hematopoietic-endothelial progenitors. Hepatology, 2007, 45, 1218-1228.	7.3	12

#	Article	IF	Citations
73	Very low density lipoprotein and low density lipoprotein isolated from patients with hepatitis C infection induce altered cellular lipid metabolism. Journal of Medical Virology, 2007, 79, 254-258.	5.0	14
74	Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF. Proteomics, 2007, 7, 143-154.	2.2	48
75	Gene regulation by homeobox transcription factor Prox1 in murine hepatoblasts. Cell and Tissue Research, 2007, 330, 209-220.	2.9	17
76	Determination of anti-HIV drug concentration in human plasma by MALDI-TOF/TOF⯆. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2006, 833, 109-116.	2.3	40
77	Snail controls differentiation of hepatocytes by repressing HNF4α expression. Journal of Cellular Physiology, 2006, 209, 230-238.	4.1	71
78	Activation of $\hat{V^{3}9V^{2}}$ T cells by non-peptidic antigens induces the inhibition of subgenomic HCV replication. International Immunology, 2006, 18, 11-18.	4.0	56
79	Conventional Protein Kinase C Inhibition Prevents Alpha Interferon-Mediated Hepatitis C Virus Replicon Clearance by Impairing STAT Activation. Journal of Virology, 2004, 78, 12809-12816.	3.4	21
80	Steatosis and intrahepatic lymphocyte recruitment in hepatitis C virus transgenic mice. Journal of General Virology, 2004, 85, 1509-1520.	2.9	41
81	Cell-based assay for the detection of chemically induced cellular stress by immortalized untransformed transgenic hepatocytes. BMC Biotechnology, 2004, 4, 5.	3.3	13
82	Murine hepatocyte cell lines promote expansion and differentiation of NK cells from stem cell precursors. Hepatology, 2004, 39, 1508-1516.	7.3	15
83	Hepatitis C virus inhibits interferon signaling through up-regulation of protein phosphatase 2A. Gastroenterology, 2004, 126, 263-277.	1.3	198
84	Induced somatic inactivation of STAT3 in mice triggers the development of a fulminant form of enterocolitis. Cytokine, 2004, 26, 45-56.	3.2	79
85	Transgenic models for Hepatitis C virus pathogenesis. Cell Death and Differentiation, 2003, 10, S16-S18.	11.2	11
86	Expression of hepatitis c virus proteins inhibits interferon \hat{l}_{\pm} signaling in the liver of transgenic mice. Gastroenterology, 2003, 124, 1465-1475.	1.3	169
87	Biotin-tagged cDNA expression libraries displayed on lambda phage: a new tool for the selection of natural protein ligands. Nucleic Acids Research, 2002, 30, 78e-78.	14.5	30
88	Cytokine-Sensitive Replication of Hepatitis B Virus in Immortalized Mouse Hepatocyte Cultures. Journal of Virology, 2002, 76, 5646-5653.	3.4	119
89	Searching for DNA–protein Interactions by Lambda Phage Display. Journal of Molecular Biology, 2002, 322, 697-706.	4.2	37
90	Synergy between truncated c-Met (cyto-Met) and c-Myc in liver oncogenesis: importance of TGF \hat{l}^2 signalling in the control of liver homeostasis and transformation. Oncogene, 2002, 21, 1335-1345.	5.9	21

#	Article	IF	Citations
91	Loss of cyclin D1 does not inhibit the proliferative response of mouse liver to mitogenic stimuli. Hepatology, 2002, 36, 1098-1105.	7.3	40
92	Oxidation affects the regulation of hepatic lipid synthesis by chylomicron remnants. Free Radical Biology and Medicine, 2001, 30, 506-515.	2.9	26
93	MMH cells: An in vitro model for the study of retinol-binding protein secretion regulated by retinol. , 1999, 181, 24-32.		28
94	Coexpression of IL-6 and soluble IL-6R causes nodular regenerative hyperplasia and adenomas of the liver. EMBO Journal, 1998, 17, 5588-5597.	7.8	121
95	p53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene, 1998, 17, 2115-2123.	5.9	164
96	Hematopoietic support and cytokine expression of murine-stable hepatocyte cell lines (MMH). Hepatology, 1998, 28, 1645-1654.	7.3	32
97	The influence of dietary saturated and unsaturated fat on hepatic cholesterol metabolism and the biliary excretion of chylomicron cholesterol in the rat. Lipids and Lipid Metabolism, 1998, 1390, 134-148.	2.6	30
98	The mechanism underlying the hypocholesterolemic effect of chronic fish oil feeding in rats is not due to increased excretion of dietary cholesterol. Atherosclerosis, 1998, 139, 253-263.	0.8	10
99	Identification of a Bipotential Precursor Cell in Hepatic Cell Lines Derived from Transgenic Mice Expressing Cyto-Met in the Liver. Journal of Cell Biology, 1998, 143, 1101-1112.	5. 2	79
100	Increased expression of c-fos, c-jun and LRF-1 is not required for in vivo priming of hepatocytes by the mitogen TCPOBOP. Oncogene, 1997, 14, 857-863.	5.9	58
101	Comparison of the Uptake and Processing of Cholesterol from Chylomicrons of Different Fatty Acid Composition in Rats Fed High-Fat and Low-Fat Diets. FEBS Journal, 1997, 246, 92-102.	0.2	8
102	Transgenic expression in the liver of truncated Met blocks apoptosis and permits immortalization of hepatocytes. EMBO Journal, 1997, 16, 495-503.	7.8	156
103	Temporal and tissue-specific expression of the MET ORF driven by the complete transcriptional unit of human A1AT gene in transgenic mice. Gene, 1995, 162, 323-328.	2.2	16
104	Evaluation of a transgenic mouse model for alpha-1-antitrypsin (AAT) related liver disease. Annals of Human Genetics, 1994, 58, 305-320.	0.8	20
105	Recognition efficiency of the hepatitis B virus polyadenylation signals is tissue specific in transgenic mice. Journal of Virology, 1992, 66, 6819-6823.	3.4	33
106	Human $\hat{l}\pm l$ -antitrypsin: molecular diagnosis of mutation and animal models of human pathology Rendiconti Lincei, 1990, 1, 99-104.	2,2	1
107	Generation of small mutation in large genomic fragments by homologous recombination: description of the technique and examples of its use. Nucleic Acids Research, 1990, 18, 6247-6251.	14.5	8
108	Assignment of human coagulation factor XII (fXII) to chromosome 5 by cDNA hybridization to DNA from somatic cell hybrids. Human Genetics, 1988, 80, 397-398.	3.8	12

#	Article	IF	CITATIONS
109	Expression of human alpha 1-acid glycoprotein genes in cultured cells and in transgenic mice Genes and Development, 1988, 2, 259-266.	5.9	98
110	The human alpha-1-antitrypsin gene is efficiently expressed from two tissue-specific promotors in transgenic mice. Nucleic Acids Research, 1987, 15, 7519-7529.	14.5	62
111	A human liver cDNA recombinant plasmid expressed in bacteria produces a protein immunolocically identical to factor VII of human coagulation. Cell Biology International Reports, 1986, 10, 200-200.	0.6	0
112	cDNA sequence coding for human coagulation factor XII (Hageman). Nucleic Acids Research, 1986, 14, 3146-3146.	14.5	21
113	A sequence upstream from the coding region is required for the transcription of the 7SK RNA genes. Nucleic Acids Research, 1986, 14, 9243-9260.	14.5	68
114	Human leukemia K-562 cells: induction of erythroid differentiation by 5-azacytidine. Cell Differentiation, 1984, 14, 87-97.	0.4	62
115	Human leukemia K562 cells: Relationship between hemin-mediated erythroid induction, cell proliferation and expression of c-abl and c-myc oncogenes. Biochemical and Biophysical Research Communications, 1984, 125, 90-96.	2.1	15
116	Molecular cloning and sequence analysis of a cDNA coding for the mouse alpha-like embryonic globin chain x. Gene, 1984, 31, 241-245.	2.2	3
117	DNA sequences complementary to human 7 SK RNA show structural similarities to the short mobile elements of the mammalian genome. Journal of Molecular Biology, 1984, 177, 575-590.	4.2	43
118	Predominant expression of \hat{I}_f and \hat{I}_μ globin genes in human leukemia K-562(S6) variant cell line. Experientia, 1983, 39, 415-416.	1.2	12
119	Desferrioxamine inhibits induced erythroid differentiation of human leukemic K-562 cells. Cell Differentiation, 1983, 12, 249-255.	0.4	15
120	Synergy between truncated c-Met (cyto-Met) and c-Myc in liver oncogenesis: importance of TGF- \hat{l}^2 signalling in the control of liver homeostasis and transformation., 0, .		1