
Stefania Catalano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5436039/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Obesity and endocrine therapy resistance in breast cancer: Mechanistic insights and perspectives. Obesity Reviews, 2022, 23, e13358.	6.5	20
2	Abstract P5-12-07: Proteomic profiling of extracellular vesicles released from leptin-treated breast cancer cells: A potential role in cancer metabolism. Cancer Research, 2022, 82, P5-12-07-P5-12-07.	0.9	0
3	Impact of Mediterranean Diet Food Choices and Physical Activity on Serum Metabolic Profile in Healthy Adolescents: Findings from the DIMENU Project. Nutrients, 2022, 14, 881.	4.1	8
4	Abstract P4-02-14: Breast cancer cell/adipocyte crosstalk in obesity hampers the efficacy of tamoxifen. Cancer Research, 2022, 82, P4-02-14-P4-02-14.	0.9	0
5	LPL, FNDC5 and PPARÎ ³ gene polymorphisms related to body composition parameters and lipid metabolic profile in adolescents from Southern Italy. Journal of Translational Medicine, 2022, 20, 107.	4.4	4
6	The Emerging Role of Extracellular Vesicles in Endocrine Resistant Breast Cancer. Cancers, 2021, 13, 1160.	3.7	10
7	Potential Antioxidant and Anti-Inflammatory Properties of Serum from Healthy Adolescents with Optimal Mediterranean Diet Adherence: Findings from DIMENU Cross-Sectional Study. Antioxidants, 2021, 10, 1172.	5.1	17
8	Nutrition Education Program and Physical Activity Improve the Adherence to the Mediterranean Diet: Impact on Inflammatory Biomarker Levels in Healthy Adolescents From the DIMENU Longitudinal Study. Frontiers in Nutrition, 2021, 8, 685247.	3.7	13
9	Nutraceuticals in the Mediterranean Diet: Potential Avenues for Breast Cancer Treatment. Nutrients, 2021, 13, 2557.	4.1	27
10	Novel Insights into the Antagonistic Effects of Losartan against Angiotensin II/AGTR1 Signaling in Glioblastoma Cells. Cancers, 2021, 13, 4555.	3.7	4
11	Adipocyte-derived extracellular vesicles promote breast cancer cell malignancy through HIF-1α activity. Cancer Letters, 2021, 521, 155-168.	7.2	27
12	The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Seminars in Cancer Biology, 2020, 60, 274-284.	9.6	83
13	Adherence to the Mediterranean diet pattern among university staff: a cross-sectional web-based epidemiological study in Southern Italy. International Journal of Food Sciences and Nutrition, 2020, 71, 581-592.	2.8	23
14	Nanoparticles Loaded with the BET Inhibitor JQ1 Block the Growth of Triple Negative Breast Cancer Cells In Vitro and In Vivo. Cancers, 2020, 12, 91.	3.7	18
15	The Biology of Exosomes in Breast Cancer Progression: Dissemination, Immune Evasion and Metastatic Colonization. Cancers, 2020, 12, 2179.	3.7	43
16	Knockdown of Leptin Receptor Affects Macrophage Phenotype in the Tumor Microenvironment Inhibiting Breast Cancer Growth and Progression. Cancers, 2020, 12, 2078.	3.7	19
17	The Role of PPARÎ ³ Ligands in Breast Cancer: From Basic Research to Clinical Studies. Cancers, 2020, 12, 2623.	3.7	36
18	Evidence for Enhanced Exosome Production in Aromatase Inhibitor-Resistant Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 5841.	4.1	22

#	Article	IF	CITATIONS
19	Natural and Synthetic PPARÎ ³ Ligands in Tumor Microenvironment: A New Potential Strategy against Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 9721.	4.1	15
20	Leptin and Notch Signaling Cooperate in Sustaining Glioblastoma Multiforme Progression. Biomolecules, 2020, 10, 886.	4.0	14
21	Acute Kidney Ischemic Injury in a Rat Model Treated by Human Omental Mesenchymal Stem Cells. Transplantation Proceedings, 2020, 52, 2977-2979.	0.6	2
22	Interfering Role of ERα on Adiponectin Action in Breast Cancer. Frontiers in Endocrinology, 2020, 11, 66.	3.5	30
23	Impact of Vigorous-Intensity Physical Activity on Body Composition Parameters, Lipid Profile Markers, and Irisin Levels in Adolescents: A Cross-Sectional Study. Nutrients, 2020, 12, 742.	4.1	33
24	Novel insights into adiponectin action in breast cancer: Evidence of its mechanistic effects mediated by ERα expression. Obesity Reviews, 2020, 21, e13004.	6.5	17
25	Modulating Tumor-Associated Macrophage Polarization by Synthetic and Natural PPARÎ ³ Ligands as a Potential Target in Breast Cancer. Cells, 2020, 9, 174.	4.1	43
26	Leptin Signaling Contributes to Aromatase Inhibitor Resistant Breast Cancer Cell Growth and Activation of Macrophages. Biomolecules, 2020, 10, 543.	4.0	28
27	n–3 Polyunsaturated Fatty Acid Amides: New Avenues in the Prevention and Treatment of Breast Cancer. International Journal of Molecular Sciences, 2020, 21, 2279.	4.1	30
28	Effects of Iodine Intake and Nutraceuticals in Thyroidology: Update and Prospects. Nutrients, 2020, 12, 1491.	4.1	6
29	Leptin Modulates Exosome Biogenesis in Breast Cancer Cells: An Additional Mechanism in Cell-to-Cell Communication. Journal of Clinical Medicine, 2019, 8, 1027.	2.4	45
30	Phosphodiesterase 5 (PDE5) Is Highly Expressed in Cancer-Associated Fibroblasts and Enhances Breast Tumor Progression. Cancers, 2019, 11, 1740.	3.7	26
31	Endemic Goiter and Iodine Prophylaxis in Calabria, a Region of Southern Italy: Past and Present. Nutrients, 2019, 11, 2428.	4.1	13
32	Structural, Thermodynamic, and Kinetic Traits of Antiestrogen-Compounds Selectively Targeting the Y537S Mutant Estrogen Receptor α Transcriptional Activity in Breast Cancer Cell Lines. Frontiers in Chemistry, 2019, 7, 602.	3.6	6
33	N-Eicosapentaenoyl Dopamine, A Conjugate of Dopamine and Eicosapentaenoic Acid (EPA), Exerts Anti-inflammatory Properties in Mouse and Human Macrophages. Nutrients, 2019, 11, 2247.	4.1	12
34	The Emerging Role of Adiponectin in Female Malignancies. International Journal of Molecular Sciences, 2019, 20, 2127.	4.1	43
35	Leptin Receptor as a Potential Target to Inhibit Human Testicular Seminoma Growth. American Journal of Pathology, 2019, 189, 687-698.	3.8	13
36	Obesity, Leptin and Breast Cancer: Epidemiological Evidence and Proposed Mechanisms. Cancers, 2019, 11, 62.	3.7	157

#	Article	IF	CITATIONS
37	Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines. Cancer Letters, 2018, 428, 12-20.	7.2	54
38	Activation of Farnesoid X Receptor impairs the tumor-promoting function of breast cancer-associated fibroblasts. Cancer Letters, 2018, 437, 89-99.	7.2	27
39	Leptin Modulates Exosome Biogenesis in Breast Cancer Cells: an Additional Mechanism in Cellâ€ŧoâ€Cell Communication. FASEB Journal, 2018, 32, 151.5.	0.5	Ο
40	Monitoring the effects of iodine prophylaxis in the adult population of southern Italy with deficient and sufficient iodine intake levels: a cross-sectional, epidemiological study. British Journal of Nutrition, 2017, 117, 170-175.	2.3	8
41	Benzofuran-2-acetic ester derivatives induce apoptosis in breast cancer cells by upregulating p21 Cip/WAF1 gene expression in p53-independent manner. DNA Repair, 2017, 51, 20-30.	2.8	22
42	Conditional expression of Ki-RasG12V in the mammary epithelium of transgenic mice induces estrogen receptor alpha (ERα)-positive adenocarcinoma. Oncogene, 2017, 36, 6420-6431.	5.9	13
43	Impact of R264C and R264H polymorphisms in human aromatase function. Journal of Steroid Biochemistry and Molecular Biology, 2017, 167, 23-32.	2.5	18
44	Effect of sildenafil on human aromatase activity: From in vitro structural analysis to catalysis and inhibition in cells. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 438-447.	2.5	9
45	Phosphodiesterase type 5 and cancers: progress and challenges. Oncotarget, 2017, 8, 99179-99202.	1.8	42
46	Omega-3 DHA and EPA Conjugates Trigger Autophagy Through PPARÎ ³ Activation in Human Breast Cancer Cells. , 2016, , 291-305.		2
47	Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy. Scientific Reports, 2016, 6, 21782.	3.3	47
48	<i>N</i> -heterocyclic carbene complexes of silver and gold as novel tools against breast cancer progression. Future Medicinal Chemistry, 2016, 8, 2213-2229.	2.3	49
49	Leptin, obesity and breast cancer: progress to understanding the molecular connections. Current Opinion in Pharmacology, 2016, 31, 83-89.	3.5	54
50	A Palladium atalyzed Carbonylation Approach to Eightâ€Membered Lactam Derivatives with Antitumor Activity. Chemistry - A European Journal, 2016, 22, 3053-3064.	3.3	34
51	Identification of novel 2-(1 <i>H</i> -indol-1-yl)-benzohydrazides CXCR4 ligands impairing breast cancer growth and motility. Future Medicinal Chemistry, 2016, 8, 93-106.	2.3	11
52	Expression and Function of Phosphodiesterase Type 5 in Human Breast Cancer Cell Lines and Tissues: Implications for Targeted Therapy. Clinical Cancer Research, 2016, 22, 2271-2282.	7.0	55
53	3-(Dipropylamino)-5-hydroxybenzofuro[2,3-f]quinazolin-1(2H)-one (DPA-HBFQ-1) plays an inhibitory role on breast cancer cell growth and progression. European Journal of Medicinal Chemistry, 2016, 107, 275-287.	5.5	39
54	Glucocorticoid Receptor as a Potential Target to Decrease Aromatase Expression and Inhibit Leydig Tumor Growth. American Journal of Pathology, 2016, 186, 1328-1339.	3.8	16

#	Article	IF	CITATIONS
55	Ligand-activated PPARÎ ³ downregulates CXCR4 gene expression through a novel identified PPAR response element and inhibits breast cancer progression. Oncotarget, 2016, 7, 65109-65124.	1.8	49
56	Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget, 2016, 7, 1262-1275.	1.8	74
57	Phosphorylation Processes Controlling Aromatase Activity in Br east Cancer: An Update. Mini-Reviews in Medicinal Chemistry, 2016, 16, 691-698.	2.4	6
58	A novel leptin antagonist peptide inhibits breast cancer growth <i>in vitro</i> and <i>in vivo</i> . Journal of Cellular and Molecular Medicine, 2015, 19, 1122-1132.	3.6	53
59	Estrogen receptorâ€Î± drives adiponectin effects on cyclin D1 expression in breast cancer cells. FASEB Journal, 2015, 29, 2150-2160.	0.5	56
60	Phosphodiesterase Type 5 as a Candidate Therapeutic Target in Cancers. Current Pathobiology Reports, 2015, 3, 193-201.	3.4	8
61	Androgens Inhibit Aromatase Expression Through DAX-1: Insights Into the Molecular Link Between Hormone Balance and Leydig Cancer Development. Endocrinology, 2015, 156, 1251-1262.	2.8	20
62	Anti-estrogen Resistance in Human Breast Tumors Is Driven by JAG1-NOTCH4-Dependent Cancer Stem Cell Activity. Cell Reports, 2015, 12, 1968-1977.	6.4	164
63	Omega-3 DHA- and EPA–dopamine conjugates induce PPARγ-dependent breast cancer cell death through autophagy and apoptosis. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2185-2195.	2.4	61
64	The Multifaceted Mechanism of Leptin Signaling within Tumor Microenvironment in Driving Breast Cancer Growth and Progression. Frontiers in Oncology, 2014, 4, 340.	2.8	62
65	Evidences that estrogen receptor α interferes with adiponectin effects on breast cancer cell growth. Cell Cycle, 2014, 13, 553-564.	2.6	65
66	Therapeutic potential of leptin receptor modulators. European Journal of Medicinal Chemistry, 2014, 78, 97-105.	5.5	17
67	Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth. Breast Cancer Research and Treatment, 2014, 146, 273-285.	2.5	87
68	Estrogen receptor beta as a novel target of androgen receptor action in breast cancer cell lines. Breast Cancer Research, 2014, 16, R21.	5.0	86
69	T3 enhances thyroid cancer cell proliferation through TRβ1/Oct-1-mediated cyclin D1 activation. Molecular and Cellular Endocrinology, 2014, 382, 205-217.	3.2	20
70	Rapid Estrogen Effects on Aromatase Phosphorylation in Breast Cancer Cells. Methods in Molecular Biology, 2014, 1204, 155-163.	0.9	1
71	Inhibition of leydig tumor growth by farnesoid X receptor activation: The <i>in vitro</i> and <i>in vivo</i> basis for a novel therapeutic strategy. International Journal of Cancer, 2013, 132, 2237-2247.	5.1	26
72	Mechanisms of divergent effects of activated peroxisome proliferator-activated receptor-l ³ on mitochondrial citrate carrier expression in 3T3-L1 fibroblasts and mature adipocytes. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1027-1036.	2.4	18

#	Article	IF	CITATIONS
73	Omegaâ€3 PUFA ethanolamides DHEA and EPEA induce autophagy through PPARγ activation in MCFâ€7 breast cancer cells. Journal of Cellular Physiology, 2013, 228, 1314-1322.	4.1	107
74	Leptin increases HER2 protein levels through a STAT3â€mediated upâ€regulation of Hsp90 in breast cancer cells. Molecular Oncology, 2013, 7, 379-391.	4.6	69
75	DAX-1, as an androgen-target gene, inhibits aromatase expression: a novel mechanism blocking estrogen-dependent breast cancer cell proliferation. Cell Death and Disease, 2013, 4, e724-e724.	6.3	53
76	A novel interplay between AR and DAXâ€1 controls aromatase expression in estrogenâ€dependent cancers. FASEB Journal, 2013, 27, 471.6.	0.5	0
77	The pMAPK/pAMPK ratio modulates the effect of adiponectin on breast cancer cell growth. FASEB Journal, 2013, 27, 1088.3.	0.5	0
78	Leptin Mediates Tumor–Stromal Interactions That Promote the Invasive Growth of Breast Cancer Cells. Cancer Research, 2012, 72, 1416-1427.	0.9	105
79	Estrogens and PTP1B Function in a Novel Pathway to Regulate Aromatase Enzymatic Activity in Breast Cancer Cells. Endocrinology, 2012, 153, 5157-5166.	2.8	43
80	Chenodeoxycholic acid through a TGR5-dependent CREB signaling activation enhances Cyclin D1 expression and promotes human endometrial cancer cell proliferation. Cell Cycle, 2012, 11, 2699-2710.	2.6	66
81	Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. Journal of Ethnopharmacology, 2012, 140, 325-332.	4.1	131
82	Estrogen receptor beta (ERβ) produces autophagy and necroptosis in human seminoma cell line through the binding of the Sp1 on the phosphatase and tensin homolog deleted from chromosome 10 (PTEN) promoter gene. Cell Cycle, 2012, 11, 2911-2921.	2.6	67
83	Nandrolone and stanozolol upregulate aromatase expression and further increase IGF-I-dependent effects on MCF-7 breast cancer cell proliferation. Molecular and Cellular Endocrinology, 2012, 363, 100-110.	3.2	28
84	The multifactorial role of leptin in driving the breast cancer microenvironment. Nature Reviews Endocrinology, 2012, 8, 263-275.	9.6	162
85	<i>Oldenlandia diffusa</i> extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERα/Sp1â€mediated p53 activation. Journal of Cellular Physiology, 2012, 227, 3363-3372.	4.1	68
86	Estrogen receptor beta binds Sp1 and recruits a corepressor complex to the estrogen receptor alpha gene promoter. Breast Cancer Research and Treatment, 2012, 134, 569-581.	2.5	51
87	Nandrolone and stanozolol induce leydig cell tumor proliferation through an estrogenâ€dependent mechanism involving IGFâ€i system. Journal of Cellular Physiology, 2012, 227, 2079-2088.	4.1	21
88	Estrogen Receptorâ€Positive Breast Cancer Cells Drive CAFs to Secrete Leptin and Support Tumor Invasiveness. FASEB Journal, 2012, 26, 142.7.	0.5	0
89	Modulatory role of Peroxisome Proliferatorâ€Activated Receptor γ on Citrate Carrier activity and expression. FASEB Journal, 2012, 26, 1034.9.	0.5	0
90	Leptin Increases HER2 Stability through HSP90 in Breast Cancer Cells. FASEB Journal, 2012, 26, 834.3.	0.5	0

#	Article	IF	CITATIONS
91	In Vivo and in Vitro Evidence That PPARÎ ³ Ligands Are Antagonists of Leptin Signaling in Breast Cancer. American Journal of Pathology, 2011, 179, 1030-1040.	3.8	50
92	Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene, 2011, 30, 4129-4140.	5.9	58
93	Bid as a potential target of apoptotic effects exerted by low doses of PPARÎ ³ and RXR ligands in breast cancer cells. Cell Cycle, 2011, 10, 2344-2354.	2.6	35
94	17β-Estradiol enhances α5 integrin subunit gene expression through ERα–Sp1 interaction and reduces cell motility and invasion of ERα-positive breast cancer cells. Breast Cancer Research and Treatment, 2010, 124, 63-77.	2.5	37
95	Akt2 Inhibition Enables the Forkhead Transcription Factor FoxO3a To Have a Repressive Role in Estrogen Receptor α Transcriptional Activity in Breast Cancer Cells. Molecular and Cellular Biology, 2010, 30, 857-870.	2.3	45
96	Farnesoid X Receptor, through the Binding with Steroidogenic Factor 1-responsive Element, Inhibits Aromatase Expression in Tumor Leydig Cells. Journal of Biological Chemistry, 2010, 285, 5581-5593.	3.4	53
97	Inhibition of cyclin D1 expression by androgen receptor in breast cancer cells–identification of a novel androgen response element. Nucleic Acids Research, 2010, 38, 5351-5365.	14.5	78
98	Inhibition of cyclin D1 expression by androgen receptor in breast cancer cells: identification of a novel androgen response element. FASEB Journal, 2010, 24, 566.3.	0.5	0
99	Rapid Estradiol/ERα Signaling Enhances Aromatase Enzymatic Activity in Breast Cancer Cells. Molecular Endocrinology, 2009, 23, 1634-1645.	3.7	75
100	Evidence that leptin through STAT and CREB signaling enhances cyclin D1 expression and promotes human endometrial cancer proliferation. Journal of Cellular Physiology, 2009, 218, 490-500.	4.1	99
101	Peroxisome proliferator-activated receptor gamma activates fas ligand gene promoter inducing apoptosis in human breast cancer cells. Breast Cancer Research and Treatment, 2009, 113, 423-434.	2.5	60
102	Beneficial effects of iodized salt prophylaxis on thyroid volume in an iodine deficient area of southern Italy. Clinical Endocrinology, 2009, 71, 124-129.	2.4	19
103	Combined Low Doses of PPARγ and RXR Ligands Trigger an Intrinsic Apoptotic Pathway in Human Breast Cancer Cells. American Journal of Pathology, 2009, 175, 1270-1280.	3.8	72
104	Evidence that Farnesoid X Receptor ligand through SFâ€₁ responsive element inhibits aromatase expression in Leydig tumor cells FASEB Journal, 2009, 23, 438.12.	0.5	0
105	Farnesoid X Receptor ligand downâ€regulates aromatase expression in Leydig tumor cells FASEB Journal, 2008, 22, 599-599.	0.5	0
106	Evidences that Leptin Up-regulates E-Cadherin Expression in Breast Cancer: Effects on Tumor Growth and Progression. Cancer Research, 2007, 67, 3412-3421.	0.9	101
107	Human sperm express a functional androgen receptor: effects on PI3K/AKT pathway. Human Reproduction, 2007, 22, 2594-2605.	0.9	81
108	Fas ligand expression in TM4 sertoli cells is enhanced by estradiol "in situ―production. Journal of Cellular Physiology, 2007, 211, 448-456.	4.1	19

#	Article	IF	CITATIONS
109	Peroxisome proliferator-activated receptor (PPAR) \hat{I}^3 is expressed by human spermatozoa: Its potential role on the sperm physiology. Journal of Cellular Physiology, 2006, 209, 977-986.	4.1	63
110	Peroxisome Proliferator-Activated Receptor-γ Activates p53 Gene Promoter Binding to the Nuclear Factor-κB Sequence in Human MCF7 Breast Cancer Cells. Molecular Endocrinology, 2006, 20, 3083-3092.	3.7	87
111	Estrogen Receptor α Binds to Peroxisome Proliferator–Activated Receptor Response Element and Negatively Interferes with Peroxisome Proliferator–Activated Receptor γ Signaling in Breast Cancer Cells. Clinical Cancer Research, 2005, 11, 6139-6147.	7.0	136
112	Leptin Secretion by Human Ejaculated Spermatozoa. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4753-4761.	3.6	112
113	Autocrine Regulation of Insulin Secretion in Human Ejaculated Spermatozoa. Endocrinology, 2005, 146, 552-557.	2.8	103
114	Estrogen Receptor (ER)α and ERβ Are Both Expressed in Human Ejaculated Spermatozoa: Evidence of Their Direct Interaction with Phosphatidylinositol-3-OH Kinase/Akt Pathway. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 1443-1451.	3.6	165
115	Low calcium intake is associated with decreased adrenal androgens and reduced bone age in premenarcheal girls in the last pubertal stages. Journal of Bone and Mineral Metabolism, 2004, 22, 64-70.	2.7	14
116	Leptin Induces, via ERK1/ERK2 Signal, Functional Activation of Estrogen Receptor α in MCF-7 Cells. Journal of Biological Chemistry, 2004, 279, 19908-19915.	3.4	229
117	Oxidative stress in diabetes-induced endothelial dysfunction involvement of nitric oxide and protein kinase C. Free Radical Biology and Medicine, 2003, 35, 683-694.	2.9	79
118	Towards a physiological role for cytochrome P450 aromatase in ejaculated human sperm. Human Reproduction, 2003, 18, 1650-1659.	0.9	61
119	Leptin Enhances, via AP-1, Expression of Aromatase in the MCF-7 Cell Line. Journal of Biological Chemistry, 2003, 278, 28668-28676.	3.4	249
120	Triiodothyronine Decreases the Activity of the Proximal Promoter (PII) of the Aromatase Gene in the Mouse Sertoli Cell Line, TM4. Molecular Endocrinology, 2003, 17, 923-934.	3.7	48
121	Aromatase Messenger RNA Is Derived from the Proximal Promoter of the Aromatase Gene in Leydig, Sertoli, and Germ Cells of the Rat Testis1. Biology of Reproduction, 2001, 64, 1439-1443.	2.7	48