
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5435605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Defect self-assembly of metal-organic framework triggers ferroptosis to overcome resistance. Bioactive Materials, 2023, 19, 1-11.	15.6	44
2	Baicalein—A Potent Pro-Homeostatic Regulator of Microglia in Retinal Ischemic Injury. Frontiers in Immunology, 2022, 13, 837497.	4.8	8
3	Coloured low-emissivity films for building envelopes for year-round energy savings. Nature Sustainability, 2022, 5, 339-347.	23.7	80
4	Single-atom iron catalysts for biomedical applications. Progress in Materials Science, 2022, 128, 100959.	32.8	17
5	A tissue-like neurotransmitter sensor for the brain and gut. Nature, 2022, 606, 94-101.	27.8	162
6	A novel copper(<scp>i</scp>) metal–organic framework as a highly efficient and ultrasensitive electrochemical platform for detection of Hg(<scp>ii</scp>) ions in aqueous solution. CrystEngComm, 2021, 23, 3043-3051.	2.6	5
7	Engineered Dissolution for Better Electrocatalysts. CheM, 2021, 7, 20-22.	11.7	0
8	A water-stable zinc(<scp>ii</scp>)–organic framework as an "on–off–on―fluorescent sensor for detection of Fe ³⁺ and reduced glutathione. CrystEngComm, 2021, 23, 1243-1250.	2.6	10
9	Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury. Nature Communications, 2021, 12, 781.	12.8	50
10	Four Novel Lanthanide(III) Metal–Organic Frameworks: Tunable Light Emission and Multiresponsive Luminescence Sensors for Vitamin B ₆ and Pesticides. Crystal Growth and Design, 2021, 21, 2889-2897.	3.0	30
11	Origin of enhanced water oxidation activity in an iridium single atom anchored on NiFe oxyhydroxide catalyst. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	71
12	"Highway―Toward Efficient Water Oxidation. Matter, 2021, 4, 21-22.	10.0	7
13	Simvastatin induced ferroptosis for triple-negative breast cancer therapy. Journal of Nanobiotechnology, 2021, 19, 311.	9.1	80
14	Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nature Communications, 2021, 12, 6122.	12.8	86
15	Three-Dimensional Hierarchical Porous Nanotubes Derived from Metal-Organic Frameworks for Highly Efficient Overall Water Splitting. IScience, 2020, 23, 100761.	4.1	26
16	The role of commensal microflora-induced T cell responses in glaucoma neurodegeneration. Progress in Brain Research, 2020, 256, 79-97.	1.4	21
17	Designing hierarchical nanoporous membranes for highly efficient gas adsorption and storage. Science Advances, 2020, 6, .	10.3	41
18	Anion Etching for Accessing Rapid and Deep Self-Reconstruction of Precatalysts for Water Oxidation. Matter, 2020, 3, 2124-2137.	10.0	177

#	Article	IF	CITATIONS
19	Biomimetic Mesoporous Silica Nanoparticles for Enhanced Blood Circulation and Cancer Therapy. ACS Applied Bio Materials, 2020, 3, 7849-7857.	4.6	32
20	A Non-volatile View of Site-Specific Adsorption and Dynamics of VOCs and CO2. Matter, 2020, 3, 1823-1824.	10.0	0
21	Dihydroartemisinin-Loaded Magnetic Nanoparticles for Enhanced Chemodynamic Therapy. Frontiers in Pharmacology, 2020, 11, 226.	3.5	38
22	The Synthesis of Hollow/Porous Cu ₂ O Nanoparticles by Ion-Pairing Behavior Control. ACS Omega, 2020, 5, 1879-1886.	3.5	8
23	Highly fluorescent copper nanoclusters for sensing and bioimaging. Biosensors and Bioelectronics, 2020, 154, 112078.	10.1	130
24	Single-atom catalysts boost nitrogen electroreduction reaction. Materials Today, 2020, 38, 99-113.	14.2	52
25	A turn-on luminescent probe for Fe ³⁺ and ascorbic acid with logic gate operation based on a zinc(<scp>ii</scp>)-based metal–organic framework. New Journal of Chemistry, 2020, 44, 8728-8735.	2.8	16
26	Revealing Molecular Mechanisms in Hierarchical Nanoporous Carbon via Nuclear Magnetic Resonance. Matter, 2020, 3, 2093-2107.	10.0	34
27	Recent advances in metal–organic frameworks for pesticide detection and adsorption. Dalton Transactions, 2020, 49, 14361-14372.	3.3	52
28	One-dimensional CoS ₂ –MoS ₂ nano-flakes decorated MoO ₂ sub-micro-wires for synergistically enhanced hydrogen evolution. Nanoscale, 2019, 11, 3500-3505.	5.6	31
29	Remediation of heavy metal contaminated soil by asymmetrical alternating current electrochemistry. Nature Communications, 2019, 10, 2440.	12.8	156
30	Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 2019, 13, 6431-6437.	14.6	181
31	Selfâ€Supported ZIFâ€Derived Co ₃ O ₄ Nanoparticlesâ€Decorated Porous Nâ€Doped Carbon Fibers as Oxygen Reduction Catalyst. Chemistry - A European Journal, 2019, 25, 6807-6813.	3.3	23
32	Two novel metal–organic frameworks based on pyridyl-imidazole-carboxyl multifunctional ligand: selective CO ₂ capture and multiresponsive luminescence sensor. Dalton Transactions, 2019, 48, 10892-10900.	3.3	70
33	Surface-engineered mesoporous silicon microparticles as high-Coulombic-efficiency anodes for lithium-ion batteries. Nano Energy, 2019, 61, 404-410.	16.0	134
34	MOF nanoleaves as new sacrificial templates for the fabrication of nanoporous Co–N _x /C electrocatalysts for oxygen reduction. Nanoscale Horizons, 2019, 4, 1006-1013.	8.0	124
35	Nanoarchitectonics for Transitionâ€Metalâ€Sulfideâ€Based Electrocatalysts for Water Splitting. Advanced Materials, 2019, 31, e1807134.	21.0	998
36	Nanowire arrays restore vision in blind mice. Nature Communications, 2018, 9, 786.	12.8	89

#	Article	IF	CITATIONS
37	Elaborately assembled core-shell structured metal sulfides as a bifunctional catalyst for highly efficient electrochemical overall water splitting. Nano Energy, 2018, 47, 494-502.	16.0	383
38	Selfâ€Templateâ€Directed Metal–Organic Frameworks Network and the Derived Honeycombâ€Like Carbon Flakes via Confinement Pyrolysis. Small, 2018, 14, e1704461.	10.0	44
39	Nuclearâ€Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy. Advanced Healthcare Materials, 2017, 6, 1601289.	7.6	103
40	Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent. Chemical Communications, 2017, 53, 236-239.	4.1	37
41	Implantable and Biodegradable Macroporous Iron Oxide Frameworks for Efficient Regeneration and Repair of Infracted Heart. Theranostics, 2017, 7, 1966-1975.	10.0	17
42	A Highly Energetic Nâ€Rich Metal–Organic Framework as a New Highâ€Energyâ€Density Material. Chemistry - A European Journal, 2016, 22, 1141-1145.	3.3	58
43	Highâ€Loading Nanoâ€5nO ₂ Encapsulated in situ in Threeâ€Dimensional Rigid Porous Carbon for Superior Lithiumâ€Ion Batteries. Chemistry - A European Journal, 2016, 22, 4915-4923.	3.3	109
44	Direct Superassemblies of Freestanding Metal–Carbon Frameworks Featuring Reversible Crystalline-Phase Transformation for Electrochemical Sodium Storage. Journal of the American Chemical Society, 2016, 138, 16533-16541.	13.7	120
45	Strategic synthesis of mesoporous Pt-on-Pd bimetallic spheres templated from a polymeric micelle assembly. Journal of Materials Chemistry A, 2016, 4, 9169-9176.	10.3	32
46	Photoelectrochemical Conversion from Graphitic C ₃ N ₄ Quantum Dot Decorated Semiconductor Nanowires. ACS Applied Materials & Interfaces, 2016, 8, 12772-12779.	8.0	103
47	A nickel cobaltate nanoparticle-decorated hierarchical porous N-doped carbon nanofiber film as a binder-free self-supported cathode for nonaqueous Li–O ₂ batteries. Journal of Materials Chemistry A, 2016, 4, 9106-9112.	10.3	72
48	Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy, 2016, 28, 232-240.	16.0	67
49	Zeolitic imidazolate framework (ZIF-8) derived nanoporous carbon: the effect of carbonization temperature on the supercapacitor performance in an aqueous electrolyte. Physical Chemistry Chemical Physics, 2016, 18, 29308-29315.	2.8	213
50	Interlaced NiS ₂ –MoS ₂ nanoflake-nanowires as efficient hydrogen evolution electrocatalysts in basic solutions. Journal of Materials Chemistry A, 2016, 4, 13439-13443.	10.3	241
51	Tunableâ€Sized Polymeric Micelles and Their Assembly for the Preparation of Large Mesoporous Platinum Nanoparticles. Angewandte Chemie, 2016, 128, 10191-10195.	2.0	14
52	Tunableâ€ s ized Polymeric Micelles and Their Assembly for the Preparation of Large Mesoporous Platinum Nanoparticles. Angewandte Chemie - International Edition, 2016, 55, 10037-10041.	13.8	122
53	Highly active nonprecious metal hydrogen evolution electrocatalyst: ultrafine molybdenum carbide nanoparticles embedded into a 3D nitrogen-implanted carbon matrix. NPG Asia Materials, 2016, 8, e293-e293.	7.9	100
54	Ultrahigh performance supercapacitors utilizing core–shell nanoarchitectures from a metal–organic framework-derived nanoporous carbon and a conducting polymer. Chemical Science, 2016, 7, 5704-5713.	7.4	236

#	Article	IF	CITATIONS
55	MOF morphologies in control. Nature Chemistry, 2016, 8, 638-639.	13.6	426
56	A Synergistic System for Lithium–Oxygen Batteries in Humid Atmosphere Integrating a Composite Cathode and a Hydrophobic Ionic Liquidâ€Based Electrolyte. Advanced Functional Materials, 2016, 26, 3291-3298.	14.9	76
57	Cage-Type Highly Graphitic Porous Carbon–Co ₃ O ₄ Polyhedron as the Cathode of Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2016, 8, 2796-2804.	8.0	102
58	Three-dimensional WS ₂ nanosheet networks for H ₂ O ₂ produced for cell signaling. Nanoscale, 2016, 8, 5786-5792.	5.6	23
59	Hierarchical Porous Nickel Cobaltate Nanoneedle Arrays as Flexible Carbon-Protected Cathodes for High-Performance Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2016, 8, 8427-8435.	8.0	77
60	Incorporation of well-dispersed sub-5-nm graphitic pencil nanodots into ordered mesoporous frameworks. Nature Chemistry, 2016, 8, 171-178.	13.6	153
61	Nitrogen-doped hollow carbon spheres with large mesoporous shells engineered from diblock copolymer micelles. Chemical Communications, 2016, 52, 505-508.	4.1	87
62	Synthesis of Nitrogenâ€Doped Mesoporous Carbon Spheres with Extraâ€Large Pores through Assembly of Diblock Copolymer Micelles. Angewandte Chemie - International Edition, 2015, 54, 588-593.	13.8	380
63	Mesoporous Spheres: Multimetallic Mesoporous Spheres Through Surfactant-Directed Synthesis (Adv.) Tj ETQq1	1 0.78431 11.2	4 ₁ rgBT /Ove
64	Solarâ€Energyâ€Driven Photoelectrochemical Biosensing Using TiO ₂ Nanowires. Chemistry - A European Journal, 2015, 21, 11288-11299.	3.3	42
65	Growth of Singleâ€Layered Twoâ€Dimensional Mesoporous Polymer/Carbon Films by Selfâ€Assembly of Monomicelles at the Interfaces of Various Substrates. Angewandte Chemie - International Edition, 2015, 54, 8425-8429.	13.8	45
66	Polymeric Micelle Assembly for the Smart Synthesis of Mesoporous Platinum Nanospheres with Tunable Pore Sizes. Angewandte Chemie - International Edition, 2015, 54, 11073-11077.	13.8	160
67	Rücktitelbild: Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates (Angew. Chem. 29/2015). Angewandte Chemie, 2015, 127, 8686-8686.	2.0	0
68	Ordered Hexagonal Mesoporous Aluminosilicates and their Application in Ligandâ€Free Synthesis of Secondary Amines. ChemCatChem, 2015, 7, 747-751.	3.7	12
69	A flexible ligand-based wavy layered metal–organic framework for lithium-ion storage. Journal of Colloid and Interface Science, 2015, 445, 320-325.	9.4	102
70	Thermal Conversion of Core–Shell Metal–Organic Frameworks: A New Method for Selectively Functionalized Nanoporous Hybrid Carbon. Journal of the American Chemical Society, 2015, 137, 1572-1580.	13.7	1,307
71	Branched Artificial Nanofinger Arrays by Mesoporous Interfacial Atomic Rearrangement. Journal of the American Chemical Society, 2015, 137, 4260-4266.	13.7	30
72	Plasmon-enhanced photoelectrochemical monitoring of Ca2+ from living cardiomyocytes. Journal of Electroanalytical Chemistry, 2015, 759, 14-20.	3.8	5

#	Article	IF	CITATIONS
73	Mesoporous Fe ₂ O ₃ –CdS Heterostructures for Real-Time Photoelectrochemical Dynamic Probing of Cu ²⁺ . Analytical Chemistry, 2015, 87, 6703-6708.	6.5	61
74	Sub-5 nm porous nanocrystals: interfacial site-directed growth on graphene for efficient biocatalysis. Chemical Science, 2015, 6, 4029-4034.	7.4	18
75	Asymmetric Supercapacitors Using 3D Nanoporous Carbon and Cobalt Oxide Electrodes Synthesized from a Single Metal–Organic Framework. ACS Nano, 2015, 9, 6288-6296.	14.6	890
76	Nanoparticle Superlattices as Efficient Bifunctional Electrocatalysts for Water Splitting. Journal of the American Chemical Society, 2015, 137, 14305-14312.	13.7	377
77	Threeâ€Dimensional Nitrogenâ€Doped Hierarchical Porous Carbon as an Electrode for Highâ€Performance Supercapacitors. Chemistry - A European Journal, 2015, 21, 17293-17298.	3.3	63
78	Interfacial assembly of mesoporous nanopyramids as ultrasensitive cellular interfaces featuring efficient direct electrochemistry. NPG Asia Materials, 2015, 7, e204-e204.	7.9	14
79	Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction. RSC Advances, 2015, 5, 6886-6891.	3.6	47
80	Direct growth of mesoporous carbon-coated Ni nanoparticles on carbon fibers for flexible supercapacitors. Journal of Materials Chemistry A, 2015, 3, 2876-2882.	10.3	28
81	Towards Vaporized Molecular Discrimination: A Quartz Crystal Microbalance (QCM) Sensor System Using Cobalt ontaining Mesoporous Graphitic Carbon. Chemistry - an Asian Journal, 2014, 9, 3238-3244.	3.3	33
82	Bio-inspired porous antenna-like nanocube/nanowire heterostructure as ultra-sensitive cellular interfaces. NPG Asia Materials, 2014, 6, e117-e117.	7.9	33
83	Ultralight Mesoporous Magnetic Frameworks by Interfacial Assembly of Prussian Blue Nanocubes. Angewandte Chemie - International Edition, 2014, 53, 2888-2892.	13.8	78
84	Surface Plasmon Resonance Enhanced Real-Time Photoelectrochemical Protein Sensing by Gold Nanoparticle-Decorated TiO ₂ Nanowires. Analytical Chemistry, 2014, 86, 6633-6639.	6.5	92
85	Sensitive enzymatic glucose detection by TiO ₂ nanowire photoelectrochemical biosensors. Journal of Materials Chemistry A, 2014, 2, 6153-6157.	10.3	139
86	Aqueous Li-ion cells with superior cycling performance using multi-channeled polyaniline/Fe ₂ O ₃ nanotube anodes. Journal of Materials Chemistry A, 2014, 2, 20177-20181.	10.3	12
87	Reversible Chemical Tuning of Charge Carriers for Enhanced Photoelectrochemical Conversion and Probing of Living Cells. Small, 2014, 10, 4967-4974.	10.0	18
88	Mesoporous carbon coated molybdenum oxide nanobelts for improved lithium ion storage. RSC Advances, 2014, 4, 29586-29590.	3.6	11
89	CoNiO2/TiN–TiOxNy composites for ultrahigh electrochemical energy storage and simultaneous glucose sensing. Journal of Materials Chemistry A, 2014, 2, 10904.	10.3	19
90	Solar-Driven Photoelectrochemical Probing of Nanodot/Nanowire/Cell Interface. Nano Letters, 2014, 14, 2702-2708.	9.1	132

#	Article	IF	CITATIONS
91	Artificial metabolism-inspired photoelectrochemical probing of biomolecules and cells. Journal of Materials Chemistry A, 2014, 2, 15752-15757.	10.3	11
92	Reduced Mesoporous Co ₃ O ₄ Nanowires as Efficient Water Oxidation Electrocatalysts and Supercapacitor Electrodes. Advanced Energy Materials, 2014, 4, 1400696.	19.5	852
93	Tailored design of functional nanoporous carbon materials toward fuel cell applications. Nano Today, 2014, 9, 305-323.	11.9	254
94	Fully Solar-Powered Photoelectrochemical Conversion for Simultaneous Energy Storage and Chemical Sensing. Nano Letters, 2014, 14, 3668-3673.	9.1	64
95	Oriented Mesoporous Nanopyramids as Versatile Plasmon-Enhanced Interfaces. Journal of the American Chemical Society, 2014, 136, 6822-6825.	13.7	62
96	Photoelectrochemical Detection of Glutathione by IrO ₂ –Hemin–TiO ₂ Nanowire Arrays. Nano Letters, 2013, 13, 5350-5354.	9.1	214
97	Carbon Nanodots Featuring Efficient FRET for Realâ€Time Monitoring of Drug Delivery and Twoâ€Photon Imaging. Advanced Materials, 2013, 25, 6569-6574.	21.0	494
98	Simultaneous Etching and Doping of TiO ₂ Nanowire Arrays for Enhanced Photoelectrochemical Performance. ACS Nano, 2013, 7, 9375-9383.	14.6	152
99	MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor. Scientific Reports, 2013, 3, 2693.	3.3	117
100	Silicon nanowire synthesis by chemical vapor deposition. Scientia Sinica Chimica, 2013, 43, 1730-1735.	0.4	0
101	Hollow ore Magnetic Colloidal Nanocrystal Clusters with Ligandâ€Exchanged Surface Modification as Delivery Vehicles for Targeted and Stimuliâ€Responsive Drug Release. Chemistry - A European Journal, 2012, 18, 16517-16524.	3.3	23
102	Magnetic drug carrier with a smart pH-responsive polymer network shell for controlled delivery of doxorubicin. Journal of Materials Chemistry, 2012, 22, 15206.	6.7	65
103	Doxorubicin onjugated Mesoporous Magnetic Colloidal Nanocrystal Clusters Stabilized by Polysaccharide as a Smart Anticancer Drug Vehicle. Small, 2012, 8, 2690-2697.	10.0	64
104	One-Step Bulk Preparation of Calcium Carbonate Nanotubes and Its Application in Anticancer Drug Delivery. Biological Trace Element Research, 2012, 147, 408-417.	3.5	5
105	An Organometallic Synthesis of TiO2Nanoparticles. Nano Letters, 2005, 5, 543-548.	9.1	140
106	Composite mesostructures by nano-confinement. Nature Materials, 2004, 3, 816-822.	27.5	626
107	Solid-Solution Nanoparticles:Â Use of a Nonhydrolytic Solâ^'Gel Synthesis To Prepare HfO2and HfxZr1-xO2Nanocrystals. Chemistry of Materials, 2004, 16, 1336-1342.	6.7	139
108	Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays. Nano Letters, 2004, 4, 2337-2342.	9.1	205

JING TANG

#	Article	IF	CITATIONS
109	Enhanced Mesostructural Order and Changes to Optical and Electrochemical Properties Induced by the Addition of Cerium(III) to Mesoporous Titania Thin Films. Chemistry of Materials, 2004, 16, 3524-3532.	6.7	52
110	Magnetite Fe3O4Nanocrystals: Spectroscopic Observation of Aqueous Oxidation Kineticsâ€. Journal of Physical Chemistry B, 2003, 107, 7501-7506.	2.6	344
111	Gasâ^'Liquidâ^'Solid Phase Transition Model for Two-Dimensional Nanocrystal Self-Assembly on Graphite. Journal of Physical Chemistry B, 2002, 106, 5653-5658.	2.6	85