
Seung K Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/543527/publications.pdf Version: 2024-02-01

SELINC K KIM

#	Article	IF	CITATIONS
1	Cryopreservation and post-thaw characterization of dissociated human islet cells. PLoS ONE, 2022, 17, e0263005.	2.5	11
2	Transgenic <i>Drosophila</i> lines for LexA-dependent gene and growth regulation. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	7
3	Heterogenous impairment of α cell function in type 2 diabetes is linked to cell maturation state. Cell Metabolism, 2022, 34, 256-268.e5.	16.2	39
4	A LexAop > UAS > QUASÂtrimeric plasmid to generate inducible and interconvertible Dro overexpression transgenes. Scientific Reports, 2022, 12, 3835.	osophila 3.3	6
5	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	12.6	295
6	Islet cell replacement and transplantation immunology in a mouse strain with inducible diabetes. Scientific Reports, 2022, 12, .	3.3	2
7	Single-cell transcriptome and accessible chromatin dynamics during endocrine pancreas development. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	20
8	A fluorescence sandwich immunoassay for the real-time continuous detection of glucose and insulin in live animals. Nature Biomedical Engineering, 2021, 5, 53-63.	22.5	44
9	SIX2 and SIX3 coordinately regulate functional maturity and fate of human pancreatic $\hat{1}^2$ cells. Genes and Development, 2021, 35, 234-249.	5.9	26
10	Single-Nucleus and In Situ RNA–Sequencing Reveal Cell Topographies in the Human Pancreas. Gastroenterology, 2021, 160, 1330-1344.e11.	1.3	112
11	CRISPR-based genome editing in primary human pancreatic islet cells. Nature Communications, 2021, 12, 2397.	12.8	26
12	Pancreatic Pseudoislets: An Organoid Archetype for Metabolism Research. Diabetes, 2021, 70, 1051-1060.	0.6	17
13	Discovering signaling mechanisms governing metabolism and metabolic diseases with Drosophila. Cell Metabolism, 2021, 33, 1279-1292.	16.2	43
14	Discovery of ciliary G protein-coupled receptors regulating pancreatic islet insulin and glucagon secretion. Genes and Development, 2021, 35, 1243-1255.	5.9	34
15	What is a β cell? – Chapter I in the Human Islet Research Network (HIRN) review series. Molecular Metabolism, 2021, 53, 101323.	6.5	20
16	Serotonin Regulates Adult β-Cell Mass by Stimulating Perinatal β-Cell Proliferation. Diabetes, 2020, 69, 205-214.	0.6	33
17	Lactation improves pancreatic \hat{l}^2 cell mass and function through serotonin production. Science Translational Medicine, 2020, 12, .	12.4	33
18	In vivo studies of glucagon secretion by human islets transplanted in mice. Nature Metabolism, 2020, 2, 547-557.	11.9	18

#	Article	IF	CITATIONS
19	Molecular and genetic regulation of pig pancreatic islet cell development. Development (Cambridge), 2020, 147, .	2.5	21
20	Patch-Seq Links Single-Cell Transcriptomes to Human Islet Dysfunction in Diabetes. Cell Metabolism, 2020, 31, 1017-1031.e4.	16.2	177
21	Modeling Spatial Correlation of Transcripts with Application to Developing Pancreas. Scientific Reports, 2019, 9, 5592.	3.3	7
22	An Interscholastic Network To Generate LexA Enhancer Trap Lines in <i>Drosophila</i> . G3: Genes, Genomes, Genetics, 2019, 9, 2097-2106.	1.8	11
23	Spheroid Culture of Human Pancreatic Ductal Cells to Reconstitute Development of Pancreatic Intraepithelial Neoplasia. Methods in Molecular Biology, 2019, 1882, 63-71.	0.9	0
24	Discovering human diabetes-risk gene function with genetics and physiological assays. Nature Communications, 2018, 9, 3855.	12.8	47
25	A Chromatin Basis for Cell Lineage and Disease Risk in the Human Pancreas. Cell Systems, 2018, 7, 310-322.e4.	6.2	38
26	Dnmt1 activity is dispensable in δ-cells but is essential for α-cell homeostasis. International Journal of Biochemistry and Cell Biology, 2017, 88, 226-235.	2.8	6
27	Converting Adult Pancreatic Islet α Cells into β Cells by Targeting Both Dnmt1 and Arx. Cell Metabolism, 2017, 25, 622-634.	16.2	165
28	Reconstituting development of pancreatic intraepithelial neoplasia from primary human pancreas duct cells. Nature Communications, 2017, 8, 14686.	12.8	47
29	A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell, 2017, 32, 460-473.e6.	16.8	142
30	Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns. Cell, 2017, 171, 321-330.e14.	28.9	443
31	A radial axis defined by Semaphorin to Neuropilin signaling controls pancreatic islet morphogenesis. Development (Cambridge), 2017, 144, 3744-3754.	2.5	29
32	Pathways to clinical CLARITY: volumetric analysis of irregular, soft, and heterogeneous tissues in development and disease. Scientific Reports, 2017, 7, 5899.	3.3	33
33	The Human Cell Atlas. ELife, 2017, 6, .	6.0	1,547
34	T cells expressing chimeric antigen receptor promote immune tolerance. JCI Insight, 2017, 2, .	5.0	68
35	Age-dependent human β cell proliferation induced by glucagon-like peptide 1 and calcineurin signaling. Journal of Clinical Investigation, 2017, 127, 3835-3844.	8.2	118
36	Using <i>Drosophila</i> to discover mechanisms underlying type 2 diabetes. DMM Disease Models and Mechanisms, 2016, 9, 365-376.	2.4	89

#	Article	IF	CITATIONS
37	A <i>Drosophila</i> LexA Enhancer-Trap Resource for Developmental Biology and Neuroendocrine Research. G3: Genes, Genomes, Genetics, 2016, 6, 3017-3026.	1.8	28
38	Efficient generation of pancreatic β-like cells from the mouse gallbladder. Stem Cell Research, 2016, 17, 587-596.	0.7	13
39	Gestational Diabetes Mellitus From Inactivation of Prolactin Receptor and MafB in Islet β-Cells. Diabetes, 2016, 65, 2331-2341.	0.6	96
40	Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human β Cell Function. Cell Metabolism, 2016, 23, 909-920.	16.2	205
41	Research Resource: Genetic Labeling of Human Islet Alpha Cells. Molecular Endocrinology, 2016, 30, 248-253.	3.7	6
42	Novel GATA6 Mutations in Patients with Pancreatic Agenesis and Congenital Heart Malformations. PLoS ONE, 2015, 10, e0118449.	2.5	39
43	Suppression of Insulin Production and Secretion by a Decretin Hormone. Cell Metabolism, 2015, 21, 323-334.	16.2	111
44	Dissecting Human Gene Functions Regulating Islet Development With Targeted Gene Transduction. Diabetes, 2015, 64, 3037-3049.	0.6	9
45	Pancreatic cancer modeling using retrograde viral vector delivery and in vivo CRISPR/Cas9-mediated somatic genome editing. Genes and Development, 2015, 29, 1576-1585.	5.9	223
46	A cellular, molecular, and pharmacological basis for appendage regeneration in mice. Genes and Development, 2015, 29, 2097-2107.	5.9	19
47	Dicer Regulates Differentiation and Viability during Mouse Pancreatic Cancer Initiation. PLoS ONE, 2014, 9, e95486.	2.5	27
48	A Genetic Strategy to Measure Circulating Drosophila Insulin Reveals Genes Regulating Insulin Production and Secretion. PLoS Genetics, 2014, 10, e1004555.	3.5	132
49	An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development. PLoS Genetics, 2014, 10, e1004645.	3.5	49
50	Insight into Insulin Secretion from Transcriptome and Genetic Analysis of Insulin-Producing Cells of <i>Drosophila</i> . Genetics, 2014, 197, 175-192.	2.9	41
51	Human <i>COL7A1</i> -corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Science Translational Medicine, 2014, 6, 264ra163.	12.4	194
52	Gene Regulatory Networks Governing Pancreas Development. Developmental Cell, 2013, 25, 5-13.	7.0	148
53	Reconstituting pancreas development from purified progenitor cells reveals genes essential for islet differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12691-12696.	7.1	67
54	Expansion and conversion of human pancreatic ductal cells into insulin-secreting endocrine cells. ELife, 2013, 2, e00940.	6.0	135

#	Article	IF	CITATIONS
55	Combined modulation of polycomb and trithorax genes rejuvenates β cell replication. Journal of Clinical Investigation, 2013, 123, 4849-4858.	8.2	47
56	Topical hypochlorite ameliorates NF-κB–mediated skin diseases in mice. Journal of Clinical Investigation, 2013, 123, 5361-5370.	8.2	88
57	Gut insulin from Foxo1 loss. Nature Genetics, 2012, 44, 363-364.	21.4	0
58	Deconstructing Pancreas Developmental Biology. Cold Spring Harbor Perspectives in Biology, 2012, 4, a012401-a012401.	5.5	77
59	Neonatal β Cell Development in Mice and Humans Is Regulated by Calcineurin/NFAT. Developmental Cell, 2012, 23, 21-34.	7.0	97
60	PDGF signalling controls age-dependent proliferation in pancreatic \hat{I}^2 -cells. Nature, 2011, 478, 349-355.	27.8	241
61	Specification of Drosophila Corpora Cardiaca Neuroendocrine Cells from Mesoderm Is Regulated by Notch Signaling. PLoS Genetics, 2011, 7, e1002241.	3.5	23
62	Deconstructing Pancreas Development to Reconstruct Human Islets from Pluripotent Stem Cells. Cell Stem Cell, 2010, 6, 300-308.	11.1	59
63	Polycomb protein Ezh2 regulates pancreatic β-cell <i>Ink4a/Arf</i> expression and regeneration in diabetes mellitus. Genes and Development, 2009, 23, 975-985.	5.9	332
64	Characterization of Six New Human Embryonic Stem Cell Lines (HSF7, -8, -9, -10, -12, and -13) Derived Under Minimal-Animal Component Conditions. Stem Cells and Development, 2008, 17, 535-546.	2.1	28
65	Menin-mediated Caspase 8 Expression in Suppressing Multiple Endocrine Neoplasia Type 1. Journal of Biological Chemistry, 2007, 282, 31332-31340.	3.4	37
66	Menin Controls Growth of Pancreatic ß-Cells in Pregnant Mice and Promotes Gestational Diabetes Mellitus. Science, 2007, 318, 806-809.	12.6	313
67	Glucose Infusion in Mice: A New Model to Induce Â-Cell Replication. Diabetes, 2007, 56, 1792-1801.	0.6	236
68	Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 175-180.	7.1	150
69	Calcineurin/NFAT signalling regulates pancreatic β-cell growth and function. Nature, 2006, 443, 345-349.	27.8	397
70	The ATP-sensitive potassium (KATP) channel-encoded dSUR gene is required for Drosophila heart function and is regulated by tinman. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11999-12004.	7.1	84
71	Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27 <i> ^{Kip1} </i> and p18 <i> ^{INK4c} </i> . Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14659-14664.	7.1	377
72	Conserved mechanisms of glucose sensing and regulation by Drosophila corpora cardiaca cells. Nature, 2004, 431, 316-320.	27.8	379

#	Article	IF	CITATIONS
73	Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 16105-16110.	7.1	394
74	Ablation of Insulin-Producing Neurons in Flies: Growth and Diabetic Phenotypes. Science, 2002, 296, 1118-1120.	12.6	981
75	Signaling and transcriptional control of pancreatic organogenesis. Current Opinion in Genetics and Development, 2002, 12, 540-547.	3.3	230
76	Pbx1 inactivation disrupts pancreas development and in Ipf1-deficient mice promotes diabetes mellitus. Nature Genetics, 2002, 30, 430-435.	21.4	170
77	Control of Cell Density and Pattern by Intercellular Signaling in Myxococcus Development. Annual Review of Microbiology, 1992, 46, 117-139.	7.3	79