Surya Prakash

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5435049/publications.pdf

Version: 2024-02-01

370 papers

25,606 citations

76 h-index

8172

140 g-index

456 all docs

456 docs citations

456 times ranked

17379 citing authors

#	Article	IF	CITATIONS
1	Integrated carbon capture and utilization to methanol with epoxide-functionalized polyamines under homogeneous catalytic conditions. Journal of Organometallic Chemistry, 2022, 965-966, 122331.	0.8	10
2	Nickel and Copper Catalyzed <i>ipso</i> â€Phosphonodifluoromethylation of Arylboronic Acids with BrCF ₂ P(O)(OEt) ₂ for the Synthesis of Phosphonodifluoromethylarenes. Chemistry - A European Journal, 2022, 28, .	1.7	6
3	Visible Lightâ€Mediated Metalâ€Free Chlorodifluoromethylation of Arenes and Heteroarenes by a Hypervalent Iodine EDA Complex. European Journal of Organic Chemistry, 2022, 2022, .	1.2	5
4	Optimization of platinum loading on partially fluorinated carbon catalysts for enhanced proton exchange membrane fuel cell performance. Journal of Power Sources, 2022, 542, 231725.	4.0	7
5	$\langle i \rangle$ gem $\langle i \rangle$ Halofluorocyclopropanes via [2 + 1] Cycloadditions of In Situ Generated CFX Carbene with Alkenes. Organic Letters, 2022, 24, 5417-5421.	2.4	3
6	lonomer Significance in Alkaline Direct Methanol Fuel Cell to Achieve High Power with a Quarternized Poly(terphenylene) Membrane. ACS Applied Energy Materials, 2021, 4, 5858-5867.	2.5	18
7	Reassessing the Necessity of the Drying Step in Hummer's Method for Graphene Oxide Synthesis. Electroanalysis, 2021, 33, 2323-2334.	1.5	5
8	Chemoselective <i>N</i> - and <i>O</i> -Difluoromethylation of 2-Pyridones, Isoquinolinones, and Quinolinones with TMSCF ₂ Br. Organic Letters, 2021, 23, 6494-6498.	2.4	18
9	Direct Synthesis of Triâ€∤Difluoromethyl Ketones from Carboxylic Acids by Crossâ€Coupling with Acyloxyphosphonium Ions. Chemistry - A European Journal, 2021, 27, 15908-15913.	1.7	8
10	Silicon-based difluoromethylations, difluoromethylenations, pentafluoroethylations, and related fluoroalkylations. , 2021, , $117-218$.		7
11	Glycol assisted efficient conversion of CO2 captured from air to methanol with a heterogeneous Cu/ZnO/Al2O3 catalyst. Journal of CO2 Utilization, 2021, 54, 101762.	3.3	15
12	Tertiary Amineâ€Ethylene Glycol Based Tandem CO ₂ Capture and Hydrogenation to Methanol: Direct Utilization of Postâ€Combustion CO ₂ . ChemSusChem, 2020, 13, 6318-6322.	3.6	30
13	Renewable Methanol Synthesis through Single Step Bi-reforming of Biogas. Industrial & Discrete Renewable Methanol Synthesis through Single Step Bi-reforming of Biogas. Industrial & Discrete Renewable Renewable Methanol Synthesis through Single Step Bi-reforming of Biogas. Industrial & Discrete Renewable R	1.8	21
14	Protonation of CH 3 N 3 and CF 3 N 3 in Superacids: Isolation and Structural Characterization of Longâ€Lived Methyl―and Trifluoromethylamino Diazonium Ions. Angewandte Chemie - International Edition, 2020, 59, 12520-12526.	7.2	1
15	Protonierung von CH 3 N 3 und CF 3 N 3 in Supersären: Isolierung und strukturelle Charakterisierung von langlebigen Methyl―und Trifluormethylaminoâ€Diazoniumâ€lonen. Angewandte Chemie, 2020, 132, 12620-12627.	1.6	O
16	Hydroxide Based Integrated CO ₂ Capture from Air and Conversion to Methanol. Journal of the American Chemical Society, 2020, 142, 4544-4549.	6.6	146
17	Synthetic Advances in Nucleophilic and Related Tri- and Difluoromethylation Protocols. , 2020, , 93-176.		3
18	Catalyst-Free Regioselective N ² Arylation of 1,2,3-Triazoles Using Diaryl Iodonium Salts. Organic Letters, 2019, 21, 6255-6258.	2.4	25

#	Article	IF	Citations
19	Catalytic Homogeneous Hydrogenation of CO to Methanol via Formamide. Journal of the American Chemical Society, 2019, 141, 12518-12521.	6.6	37
20	Cyclobutane dication, (CH ₂) ₄ ²⁺ : a model for a two-electron four-center (2e-4c) Woodward–Hoffmann frozen transition state. Beilstein Journal of Organic Chemistry, 2019, 15, 1475-1479.	1.3	2
21	Integrated CO ₂ Capture and Conversion to Formate and Methanol: Connecting Two Threads. Accounts of Chemical Research, 2019, 52, 2892-2903.	7.6	210
22	ipso-Bromination/iodination of arylboronic acids: Poly(4-vinylpyridine)-Br2/I2 complexes as safe and efficient reagents. Tetrahedron Letters, 2019, 60, 151020.	0.7	2
23	Studies on Long-Lived (Pentafluorosulfanyl)phenyl-Substituted Carbocations. Journal of Organic Chemistry, 2019, 84, 11724-11734.	1.7	3
24	Reduced Graphene Oxide Supported Palladium Nanoparticles for Enhanced Electrocatalytic Activity toward Formate Electrooxidation in an Alkaline Medium. ACS Applied Energy Materials, 2019, 2, 7104-7111.	2.5	37
25	Photochemistry of 2-Nitroarenes: 2-Nitrophenyl-α-trifluoromethyl Carbinols as Synthons for Fluoroorganics. Journal of the American Chemical Society, 2019, 141, 15921-15931.	6.6	5
26	2-Nitrodiphenylalkanes/alkenes as adept photosynthons for direct access to valuable N-heterocycles. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 375, 158-165.	2.0	0
27	One-pot preparation of (RSe)2CF2 and (RS)2CF2 compounds via insertion of TMSCF3-derived difluorocarbene into diselenides and disulfides. Tetrahedron, 2019, 75, 4167-4173.	1.0	13
28	Effect of the Cathode Catalyst Layer Thickness on the Performance in Direct Methanol Fuel Cells. Electroanalysis, 2019, 31, 718-725.	1.5	6
29	A Oneâ€Pot Synthesis of Platinum Nanoparticles on Electrochemically Exfoliated Graphite. ChemistrySelect, 2019, 4, 4767-4770.	0.7	0
30	Halotrimethylsilane-Nitrite/Nitrate Salts: Efficient and Versatile Reagent System for Diverse Organic Synthetic Transformations. Synlett, 2019, 30, 1037-1047.	1.0	5
31	Direct Access to Acyl Fluorides from Carboxylic Acids Using a Phosphine/Fluoride Deoxyfluorination Reagent System. Organic Letters, 2019, 21, 1659-1663.	2.4	64
32	Combined CO ₂ Capture and Hydrogenation to Methanol: Amine Immobilization Enables Easy Recycling of Active Elements. ChemSusChem, 2019, 12, 3172-3177.	3.6	54
33	Oxidationâ€Resistant, Costâ€Effective Epoxideâ€Modified Polyamine Adsorbents for CO ₂ Capture from Various Sources Including Air. ChemSusChem, 2019, 12, 1712-1723.	3.6	67
34	Mechanistic Insights into Ruthenium-Pincer-Catalyzed Amine-Assisted Homogeneous Hydrogenation of CO ₂ to Methanol. Journal of the American Chemical Society, 2019, 141, 3160-3170.	6.6	123
35	Siladifluoromethylation and Deoxo-trifluoromethylation of P ^V â€"H Compounds with TMSCF ₃ : Route to P ^V â€"CF ₂ ^{â€"} Transfer Reagents and Pâ€"CF ₃ Compounds. Organic Letters, 2019, 21, 1526-1529.	2.4	22
36	Aqueous Base Promoted <i>O</i> -Difluoromethylation of Carboxylic Acids with TMSCF ₂ Br: Bench-Top Access to Difluoromethyl Esters. Organic Letters, 2019, 21, 9377-9380.	2.4	13

#	Article	IF	CITATIONS
37	Nucleophilic difluoromethylation of aromatic aldehydes using trimethyl(trifluoromethyl)silane (TMSCF 3). Journal of Fluorine Chemistry, 2018, 208, 10-14.	0.9	18
38	Direct Difluorination–Hydroxylation, Trifluorination, and C(sp ²)–H Fluorination of Enamides. Organic Letters, 2018, 20, 1042-1045.	2.4	33
39	Integrative CO ₂ Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy. Journal of the American Chemical Society, 2018, 140, 1580-1583.	6.6	203
40	Molecular Structure and Crystal Packing of Monofluoromethoxyarenes. European Journal of Organic Chemistry, 2018, 2018, 3724-3734.	1.2	6
41	Advances in Homogeneous Catalysis for Low Temperature Methanol Reforming in the Context of the Methanol Economy. Topics in Catalysis, 2018, 61, 542-559.	1.3	48
42	Difference and Significance of Regenerative Versus Renewable Carbon Fuels and Products. Topics in Catalysis, 2018, 61, 522-529.	1.3	26
43	Advances in catalytic homogeneous hydrogenation of carbon dioxide to methanol. Journal of CO2 Utilization, 2018, 23, 212-218.	3.3	154
44	A Carbon-Neutral CO ₂ Capture, Conversion, and Utilization Cycle with Low-Temperature Regeneration of Sodium Hydroxide. Journal of the American Chemical Society, 2018, 140, 16873-16876.	6.6	79
45	C(sp ²)–H Trifluoromethylation of enamides using TMSCF ₃ : access to trifluoromethylated isoindolinones, isoquinolinones, 2-pyridinones and other heterocycles. Chemical Communications, 2018, 54, 10574-10577.	2.2	45
46	Structural parameters to consider in selecting silica supports for polyethylenimine based CO2 solid adsorbents. Importance of pore size. Journal of CO2 Utilization, 2018, 26, 246-253.	3.3	37
47	Effect of pH on the Reduction of Graphene Oxide on its Structure and Oxygen Reduction Capabilities in the Alkaline Media. Electroanalysis, 2018, 30, 1938-1945.	1.5	3
48	Toward a Sustainable Carbon Cycle. , 2018, , 919-962.		27
49	Catalyst and solvent free microwave-assisted synthesis of substituted 1,2,3-triazoles. Green Chemistry, 2018, 20, 3700-3704.	4.6	24
50	Superelectrophilic Activation of Phenylglyoxamides: Efficient Synthesis of Triarylacetamides and Fluorenecarboxamides by Superacid Catalysis. Topics in Catalysis, 2018, 61, 652-663.	1.3	3
51	Regioselective deuteration of alcohols in D ₂ O catalysed by homogeneous manganese and iron pincer complexes. Green Chemistry, 2018, 20, 2706-2710.	4.6	30
52	Beyond Oil and Gas., 2018,,.		94
53	Efficient Reversible Hydrogen Carrier System Based on Amine Reforming of Methanol. Journal of the American Chemical Society, 2017, 139, 2549-2552.	6.6	102
54	Benzodiazines: recent synthetic advances. Chemical Society Reviews, 2017, 46, 3060-3094.	18.7	63

#	Article	IF	CITATIONS
55	Chloro/bromotrimethylsilane-Cu(NO 3) 2 \hat{A} -3H 2 O: Safe and efficient reagent system for the decarboxylative ipso -nitration and dibromination of cinnamic acids. Tetrahedron Letters, 2017, 58, 2842-2845.	0.7	14
56	Remarkable effect of moisture on the CO 2 adsorption of nano-silica supported linear and branched polyethylenimine. Journal of CO2 Utilization, 2017, 19, 91-99.	3.3	73
57	Effect of the thickness of the anode electrode catalyst layers on the performance in direct methanol fuel cells. Journal of Power Sources, 2017, 352, 165-173.	4.0	39
58	Selective Lateâ€Stage Hydrodefluorination of Trifluoromethylarenes: A Facile Access to Difluoromethylarenes. European Journal of Organic Chemistry, 2017, 2017, 2322-2326.	1.2	71
59	Chemical Formation of Methanol and Hydrocarbon ("Organicâ€) Derivatives from CO ₂ and H ₂ —Carbon Sources for Subsequent Biological Cell Evolution and Life's Origin. Journal of the American Chemical Society, 2017, 139, 566-570.	6.6	26
60	Hydrothermal Preparation, Crystal Chemistry, and Redox Properties of Iron Muscovite Clay. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34024-34032.	4.0	5
61	Manganese-Catalyzed Sequential Hydrogenation of CO ₂ to Methanol via Formamide. ACS Catalysis, 2017, 7, 6347-6351.	5.5	203
62	The Effect of Annealing Temperature on Nickel on Reduced Graphene Oxide Catalysts on Urea Electrooxidation. Electrochimica Acta, 2017, 253, 489-497.	2.6	40
63	Silicon-Based Reagents for Difluoromethylation and Difluoromethylenation Reactions. Synthesis, 2017, 49, 3394-3406.	1.2	63
64	One-Pot Conversion of Methane to Light Olefins or Higher Hydrocarbons through H-SAPO-34-Catalyzed in Situ Halogenation. Journal of the American Chemical Society, 2017, 139, 18078-18083.	6.6	31
65	Cyclopentyl, cyclohexyl, and cycloheptyl cations: computational studies of the structures, stability, 13C NMR chemical shifts, and possible rearrangement pathways. Structural Chemistry, 2017, 28, 317-326.	1.0	5
66	Direct synthesis of 2-/3-(trifluoromethyl)thiochroman-4-ones: Superacid-induced tandem alkylation-cyclic acylation of benzenethiols using 2-/3-(trifluoromethyl)acrylic acid. Journal of Fluorine Chemistry, 2017, 196, 63-66.	0.9	4
67	George Andrew Olah. Resonance, 2017, 22, 1111-1153.	0.2	1
68	Synthesis of Chiral Trifluoromethyl Benzylamines by Heterogeneous Catalytic Reductive Amination. Topics in Catalysis, 2016, 59, 1207-1213.	1.3	11
69	Relevance and Significance of Extraterrestrial Abiological Hydrocarbon Chemistry. Journal of the American Chemical Society, 2016, 138, 6905-6911.	6.6	22
70	Diazo Strategy for the Synthesis of Pyridazines: Pivotal Impact of the Configuration of the Diazo Precursor on the Process. Chemistry - A European Journal, 2016, 22, 174-184.	1.7	10
71	Iridium-Catalyzed Continuous Hydrogen Generation from Formic Acid and Its Subsequent Utilization in a Fuel Cell: Toward a Carbon Neutral Chemical Energy Storage. ACS Catalysis, 2016, 6, 7475-7484.	5.5	75
72	CO ₂ capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts. Green Chemistry, 2016, 18, 5831-5838.	4.6	132

#	Article	IF	CITATIONS
73	Direct Difluoromethylenation of Carbonyl Compounds by Using TMSCF ₃ : The Right Conditions. European Journal of Organic Chemistry, 2016, 2016, 4965-4969.	1.2	62
74	The Nucleophilicity of Persistent αâ€Monofluoromethide Anions. Angewandte Chemie - International Edition, 2016, 55, 12845-12849.	7.2	15
75	The Nucleophilicity of Persistent αâ€Monofluoromethide Anions. Angewandte Chemie, 2016, 128, 13037-13041.	1.6	6
76	Chemical Aspects of Astrophysically Observed Extraterrestrial Methanol, Hydrocarbon Derivatives, and Ions. Journal of the American Chemical Society, 2016, 138, 1717-1722.	6.6	31
77	Conversion of CO ₂ from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst. Journal of the American Chemical Society, 2016, 138, 778-781.	6.6	458
78	Electrophilic amination of aromatics with sodium azide in BF3–H2O. Tetrahedron Letters, 2016, 57, 288-291.	0.7	15
79	Synthesis of 3-substituted isoindolin-1-ones via a tandem desilylation, cross-coupling, hydroamidation sequence under aqueous phase-transfer conditions. Organic and Biomolecular Chemistry, 2016, 14, 85-92.	1.5	41
80	Amineâ€Free Reversible Hydrogen Storage in Formate Salts Catalyzed by Ruthenium Pincer Complex without pH Control or Solvent Change. ChemSusChem, 2015, 8, 1442-1451.	3.6	107
81	Lewis Acid Catalyzed Condensation–Cyclization Cascade: Direct Synthesis of Di/Trifluoromethylâ€1,2,3,4â€tetrahydroquinazolines. Chemistry - A European Journal, 2015, 21, 10170-10178.	1.7	10
82	Applicability of linear polyethylenimine supported on nano-silica for the adsorption of CO ₂ from various sources including dry air. RSC Advances, 2015, 5, 52550-52562.	1.7	64
83	Superelectrophilic Activation of Crotonic/Methacrylic Acids: Direct Access to Thiochroman-4-ones from Benzenethiols by Microwave-Assisted One-Pot Alkylation/Cyclic Acylation. Organic Letters, 2015, 17, 6170-6173.	2.4	21
84	Paul von Ragué Schleyer (1930-2014). Angewandte Chemie - International Edition, 2015, 54, 2322-2323.	7.2	0
85	Single Step Bi-reforming and Oxidative Bi-reforming of Methane (Natural Gas) with Steam and Carbon Dioxide to Metgas (CO-2H ₂) for Methanol Synthesis: Self-Sufficient Effective and Exclusive Oxygenation of Methane to Methanol with Oxygen. Journal of the American Chemical Society, 2015, 137, 8720-8729.	6.6	128
86	Poly(4-vinylpyridine)-nitrating mixture complex (PVP-NM): solid nitrating mixture equivalent for safe and efficient aromatic nitration. Green Chemistry, 2015, 17, 3446-3451.	4.6	13
87	Direct S-difluoromethylation of thiols using the Ruppert–Prakash reagent. Journal of Fluorine Chemistry, 2015, 180, 186-191.	0.9	35
88	Taming of superacids: PVP-triflic acid as an effective solid triflic acid equivalent for Friedel–Crafts hydroxyalkylation and acylation. Journal of Fluorine Chemistry, 2015, 171, 102-112.	0.9	16
89	ipso-Nitrosation of arylboronic acids with chlorotrimethylsilane and sodium nitrite. Tetrahedron Letters, 2014, 55, 1975-1978.	0.7	13
90	Stereoselective Synthesis of Fluoroalkenoates and Fluorinated Isoxazolidinones: Nâ€Substituents Governing the Dual Reactivity of Nitrones. Chemistry - A European Journal, 2014, 20, 831-838.	1.7	19

#	Article	IF	CITATIONS
91	<i>N</i> -Difluoromethylation of Imidazoles and Benzimidazoles Using the Ruppert–Prakash Reagent under Neutral Conditions. Organic Letters, 2014, 16, 54-57.	2.4	75
92	Synthesis of Dihydropyrimidinones/Thiopyrimidinones: Nafion-Ga, an Efficient "Green―Lewis Acid Catalyst for the Biginelli Reaction. Catalysis Letters, 2014, 144, 2012-2020.	1.4	30
93	Easily Regenerable Solid Adsorbents Based on Polyamines for Carbon Dioxide Capture from the Air. ChemSusChem, 2014, 7, 1386-1397.	3.6	133
94	Preparation of fluorinated RNA nucleotide analogs potentially stable to enzymatic hydrolysis in RNA and DNA polymerase assays. Journal of Fluorine Chemistry, 2014, 167, 226-230.	0.9	5
95	CO ₂ capture on easily regenerable hybrid adsorbents based on polyamines and mesocellular silica foam. Effect of pore volume of the support and polyamine molecular weight. RSC Advances, 2014, 4, 19403-19417.	1.7	62
96	Poly(N-vinylpyrrolidone)â€"H2O2 and poly(4-vinylpyridine)â€"H2O2 complexes: solid H2O2 equivalents for selective oxidation of sulfides to sulfoxides and ketones to gem-dihydroperoxides. Green Chemistry, 2014, 16, 3616.	4.6	35
97	Recycling of carbon dioxide to methanol and derived products – closing the loop. Chemical Society Reviews, 2014, 43, 7995-8048.	18.7	1,125
98	Formic Acid As a Hydrogen Storage Medium: Ruthenium-Catalyzed Generation of Hydrogen from Formic Acid in Emulsions. ACS Catalysis, 2014, 4, 311-320.	5.5	72
99	Longâ€Lived Trifluoromethanide Anion: A Key Intermediate in Nucleophilic Trifluoromethylations. Angewandte Chemie - International Edition, 2014, 53, 11575-11578.	7.2	122
100	Effect of configuration of 2-vinyldiazocarbonyl compounds on their reactivity: experimental and computational study. Organic and Biomolecular Chemistry, 2014, 12, 682-689.	1.5	14
101	Electrochemical CO ₂ Reduction: Recent Advances and Current Trends. Israel Journal of Chemistry, 2014, 54, 1451-1466.	1.0	356
102	The Trifluoromethyl Group as a Conformational Stabilizer and Probe: Conformational Analysis of Cinchona Alkaloid Scaffolds. Journal of the American Chemical Society, 2014, 136, 10418-10431.	6.6	17
103	Self-Sufficient and Exclusive Oxygenation of Methane and Its Source Materials with Oxygen to Methanol via Metgas Using Oxidative Bi-reforming. Journal of the American Chemical Society, 2013, 135, 10030-10031.	6.6	43
104	Bi-reforming of Methane from Any Source with Steam and Carbon Dioxide Exclusively to Metgas (CO–2H ₂) for Methanol and Hydrocarbon Synthesis. Journal of the American Chemical Society, 2013, 135, 648-650.	6.6	237
105	Direct Synthesis of Diverse βâ€Fluoroethylamines by a Multicomponent Protocol. Chemistry - A European Journal, 2013, 19, 3579-3583.	1.7	18
106	Difluoro(sulfinato)methylation of Nâ€Sulfinyl Imines Facilitated by 2â€Pyridyl Sulfone: Stereoselective Synthesis of Difluorinated βâ€Amino Sulfonic Acids and Peptidosulfonamides. Angewandte Chemie - International Edition, 2013, 52, 10835-10839.	7.2	36
107	Electrochemical reduction of CO2 over Sn-Nafion \hat{A}^{\otimes} coated electrode for a fuel-cell-like device. Journal of Power Sources, 2013, 223, 68-73.	4.0	168
108	Thermolysis of trifluoromethyl-containing vinyldiazocarbonyl compounds and X-ray crystal structure analysis of unexpected reaction products. Journal of Fluorine Chemistry, 2013, 156, 322-326.	0.9	4

#	Article	IF	Citations
109	Organoamines-grafted on nano-sized silica for carbon dioxide capture. Journal of CO2 Utilization, 2013, 1, 1-7.	3.3	36
110	Nucleophilic Trifluoromethylation of Carbonyl Compounds: Trifluoroacetaldehyde Hydrate as a Trifluoromethyl Source. Journal of Organic Chemistry, 2013, 78, 3300-3305.	1.7	38
111	Nafion–Fe: A New Efficient "Green―Lewis Acid Catalyst for the Ketonic Strecker Reaction. Catalysis Letters, 2013, 143, 303-312.	1.4	16
112	Synthesis of perimidine and 1,5-benzodiazepine derivatives using tamed Brønsted acid, BF3–H2O. Journal of Fluorine Chemistry, 2013, 152, 99-105.	0.9	20
113	Two-Stage Synthesis of 3-(Perfluoroalkyl)-Substituted Vinyldiazocarbonyl Compounds and Their Nonfluorinated Counterparts: A Comparative Study. Synthesis, 2013, 45, 1215-1226.	1.2	24
114	Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy and Environmental Science, 2012, 5, 7833.	15.6	549
115	Taming of Fluoroform: Direct Nucleophilic Trifluoromethylation of Si, B, S, and C Centers. Science, 2012, 338, 1324-1327.	6.0	262
116	Copperâ \in Mediated Difluoromethylation of (Hetero)aryl lodides and \hat{l}^2 â \in Styryl Halides with Tributyl(difluoromethyl)stannane. Angewandte Chemie - International Edition, 2012, 51, 12090-12094.	7.2	290
117	A Domino Approach of Heck Coupling for the Synthesis of \hat{I}^2 -Trifluoromethylstyrenes. Organic Letters, 2012, 14, 1146-1149.	2.4	59
118	Silica Nanoparticles as Supports for Regenerable CO ₂ Sorbents. Energy & Sorben	2.5	82
119	Nafionâ€Ru: A Sustainable Catalyst for Selective Hydration of Nitriles to Amides. Asian Journal of Organic Chemistry, 2012, 1, 146-149.	1.3	20
120	Efficient synthesis of trifluoromethylated dihydrochalcones, aryl vinyl ketones and indanones by superelectrophilic activation of 4,4,4-trifluoro/3-(trifluoromethyl)crotonic acids. Journal of Fluorine Chemistry, 2012, 143, 292-302.	0.9	20
121	Gallium(III) Triflate: An Efficient and a Sustainable Lewis Acid Catalyst for Organic Synthetic Transformations. Accounts of Chemical Research, 2012, 45, 565-577.	7.6	85
122	Tetraflic Acid (1,1,2,2â€Tetrafluoroethanesulfonic Acid,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 227 Td (HC _{2 Organic Synthesis. Advanced Synthesis and Catalysis, 2012, 354, 2163-2171.}	F <s 2.1</s 	sub>4
123	Enantioselective Synthesis of α-Stereogenic γ-Keto Esters via Formal Umpolung. Organic Letters, 2012, 14, 3260-3263.	2.4	32
124	Thermocontrolled benzylimine–benzaldimine rearrangement over Nafion-H catalysts for efficient entry into α-trifluoromethylbenzylamines. Tetrahedron Letters, 2012, 53, 607-611.	0.7	10
125	Facile synthesis of $\hat{l}\pm$ -monofluoromethyl alcohols: Nucleophilic monofluoromethylation of aldehydes using TMSCF(SO2Ph)2. Journal of Fluorine Chemistry, 2012, 133, 27-32.	0.9	17
126	Fluoroanalogs of DDT: Superacidic BF ₃ â€"H ₂ O Catalyzed Facile Synthesis of 1,1,1-Trifluoro-2,2-diarylethanes and 1,1-Difluoro-2,2-diarylethanes. Organic Letters, 2011, 13, 4128-4131.	2.4	45

#	Article	IF	Citations
127	Conformational Study of 9-Dehydro-9-Trifluoromethyl Cinchona Alkaloids via ¹⁹ F NMR Spectroscopy: Emergence of Trifluoromethyl Moiety as a Conformational Stabilizer and a Probe. Journal of the American Chemical Society, 2011, 133, 9992-9995.	6.6	34
128	Anthropogenic Chemical Carbon Cycle for a Sustainable Future. Journal of the American Chemical Society, 2011, 133, 12881-12898.	6.6	1,159
129	A Domino Approach (Hydrolysis/Dehydrohalogenation/Heck Coupling) for the Synthesis of Styrene Sulfonate Salts. Journal of the American Chemical Society, 2011, 133, 2140-2143.	6.6	29
130	A new route to α-alkyl-α-fluoromethylenebisphosphonates. Organic and Biomolecular Chemistry, 2011, 9, 4035.	1.5	14
131	Study of operating conditions and cell design on the performance of alkaline anion exchange membrane based direct methanol fuel cells. Journal of Power Sources, 2011, 196, 7967-7972.	4.0	56
132	Carbon Dioxide Capture from the Air Using a Polyamine Based Regenerable Solid Adsorbent. Journal of the American Chemical Society, 2011, 133, 20164-20167.	6.6	428
133	Reduction of Carbonyl to Methylene: Organosilane-Ga(OTf)3 as an Efficient Reductant System. Catalysis Letters, 2011, 141, 507-511.	1.4	14
134	N,N-Dimethyl-S-difluoromethyl-S-phenylsulfoximinium tetrafluoroborate: A versatile electrophilic difluoromethylating reagent. Journal of Fluorine Chemistry, 2011, 132, 792-798.	0.9	91
135	Hydrogen Generation from Formic Acid Decomposition by Ruthenium Carbonyl Complexes. Tetraruthenium Dodecacarbonyl Tetrahydride as an Active Intermediate. ChemSusChem, 2011, 4, 1241-1248.	3.6	83
136	From Difluoromethyl 2â€Pyridyl Sulfone to Difluorinated Sulfonates: A Protocol for Nucleophilic Difluoro(sulfonato)methylation. Angewandte Chemie - International Edition, 2011, 50, 2559-2563.	7.2	66
137	Synthesis of <i>gemâ€</i> Difluorinated Cyclopropanes and Cyclopropenes: Trifluoromethyltrimethylsilane as a Difluorocarbene Source. Angewandte Chemie - International Edition, 2011, 50, 7153-7157.	7.2	285
138	On the Nature of CHâ‹â‹â‹Fi£¿C Interactions in Hindered CF‹sub›3‹/sub›ï£¿C(sp‹sup›3‹/sup›) Bond Rotations. Angewandte Chemie - International Edition, 2011, 50, 11761-11764.	7.2	34
139	α-Halogenation of carbonyl compounds: halotrimethylsilane–nitrate salt couple as an efficient halogenating reagent system. Tetrahedron Letters, 2011, 52, 1217-1221.	0.7	29
140	Inoculation procedures and characterization of membrane electrode assemblies for microbial fuel cells. Journal of Power Sources, 2010, 195, 111-117.	4.0	27
141	Gallium(III) Triflate Catalyzed Direct Reductive Amination of Aldehydes. Catalysis Letters, 2010, 137, 111-117.	1.4	27
142	Microwave-Assisted Nafion-H Catalyzed Friedel–Crafts Type Reaction of Aromatic Aldehydes with Arenes: Synthesis of Triarylmethanes. Catalysis Letters, 2010, 138, 155-159.	1.4	25
143	<i>i>ipso</i> â€Nitration of Arenes. Angewandte Chemie - International Edition, 2010, 49, 1726-1728.	7.2	83
144	Synthesis of monofluoroalkenes via Julia–Kocienski reaction. Journal of Fluorine Chemistry, 2010, 131, 1192-1197.	0.9	44

#	Article	IF	Citations
145	Efficient synthesis of α-(fluoro/chloro/methoxy)disulfonylmethane derivatives as tunable substituted methyl synthons via a new C–S bond forming strategy. Journal of Fluorine Chemistry, 2010, 131, 1007-1012.	0.9	14
146	Synthesis and biological evaluation of fluorinated deoxynucleotide analogs based on bis-(difluoromethylene)triphosphoric acid. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15693-15698.	3.3	44
147	Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy and Environmental Science, 2010, 3, 1949.	15.6	217
148	Preparation of Trifluoromethylated Dihydrocoumarins, Indanones, and Arylpropanoic Acids by Tandem Superacidic Activation of 2-(Trifluoromethyl)acrylic Acid with Arenes. Journal of Organic Chemistry, 2010, 75, 2219-2226.	1.7	42
149	Nucleophilic Perfluoroalkylation of Imines and Carbonyls: Perfluoroalkyl Sulfones as Efficient Perfluoroalkyl-Transfer Motifs. Organic Letters, 2010, 12, 2932-2935.	2.4	48
150	Efficient One-Pot Synthesis of Novel Fluorinated Heterocycles Using Trimethylsilyl Trifluoromethanesulfonate as a Metal-Free Homogeneous Lewis Acid Catalyst. ACS Symposium Series, 2009, , 59-83.	0.5	1
151	Regioselective Synthesis of Phenols and Halophenols from Arylboronic Acids Using Solid Poly(<i>N</i> à€vinylpyrrolidone)/ Hydrogen Peroxide and Poly(4â€vinylpyridine)/Hydrogen Peroxide Complexes. Advanced Synthesis and Catalysis, 2009, 351, 1567-1574.	2.1	95
152	A Persistent αâ€Fluorocarbanion and Its Analogues: Preparation, Characterization, and Computational Study. Angewandte Chemie - International Edition, 2009, 48, 5358-5362.	7.2	50
153	Poly(4-vinylpyridine) catalyzed selective methanolysis of methyl and methylene bromides. Tetrahedron Letters, 2009, 50, 6016-6018.	0.7	6
154	Ipso-amidation of arylboronic acids: Xenon difluoride-nitriles as efficient reagent systems. Journal of Fluorine Chemistry, 2009, 130, 806-809.	0.9	18
155	Poly(4-vinylpyridine) catalyzed hydrolysis of methyl bromide to methanol and dimethyl ether. Journal of Molecular Catalysis A, 2009, 310, 180-183.	4.8	13
156	Â-Fluoro-Â-nitro(phenylsulfonyl)methane as a fluoromethyl pronucleophile: Efficient stereoselective Michael addition to chalcones. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4090-4094.	3.3	91
157	Efficient Nucleophilic Fluoromethylation and Subsequent Transformation of Alkyl and Benzyl Halides Using Fluorobis(phenylsulfonyl)methane. Organic Letters, 2009, 11, 1127-1130.	2.4	80
158	Recent studies of persistent carbodications. Advances in Physical Organic Chemistry, 2009, 43, 219-260.	0.5	2
159	α,β-Difluoromethylene Deoxynucleoside 5′-Triphosphates: A Convenient Synthesis of Useful Probes for DNA Polymerase β Structure and Function. Organic Letters, 2009, 11, 1883-1886.	2.4	43
160	Gallium (III) triflate-catalyzed synthesis of heterocycles: quinoxalines, 1,5-benzodiazepines and their fluorinated derivatives. Future Medicinal Chemistry, 2009, 1, 909-920.	1.1	12
161	BF ₃ â^'H ₂ O Catalyzed Hydroxyalkylation of Aromatics with Aromatic Aldehydes and Dicarboxaldehydes: Efficient Synthesis of Triarylmethanes, Diarylmethylbenzaldehydes, and Anthracene Derivatives. Journal of Organic Chemistry, 2009, 74, 8659-8668.	1.7	112
162	Chemical Recycling of Carbon Dioxide to Methanol and Dimethyl Ether: From Greenhouse Gas to Renewable, Environmentally Carbon Neutral Fuels and Synthetic Hydrocarbons. Journal of Organic Chemistry, 2009, 74, 487-498.	1.7	1,320

#	Article	IF	CITATIONS
163	Stereoselective synthesis of fluorobis(phenylsulfonyl)methyl-substituted alkenes using free radical fluoroalkylation. Journal of Fluorine Chemistry, 2008, 129, 1036-1040.	0.9	19
164	Novel single step electrochemical route to \hat{I}^3 -MnO2 nanoparticle-coated polyaniline nanofibers: Thermal stability and formic acid oxidation on the resulting nanocomposites. Journal of Power Sources, 2008, 181, 79-84.	4.0	25
165	1â€Oxoniaadamantane. European Journal of Organic Chemistry, 2008, 2008, 4555-4558.	1.2	13
166	Nucleophilic difluoromethylation and difluoromethylenation of aldehydes and ketones using diethyl difluoromethylphosphonate. Tetrahedron, 2008, 64, 10977-10985.	1.0	48
167	Efficient green synthesis of α-aminonitriles, precursors of α-amino acids. Green Chemistry, 2008, 10, 1105.	4.6	30
168	Direct Electrophilic Monofluoromethylation. Organic Letters, 2008, 10, 557-560.	2.4	109
169	Nafion $\hat{A}^{\text{@}}$ -H Catalyzed Synthesis of Fluorinated Benzimidazolines, Benzothiazolines, Benzoxazolines and Dihydrobenzoxazinones. Synthesis, 2008, 2008, 897-902.	1.2	20
170	Facile Synthesis of Diarylmethylpyridines/Diarylmethylquinolines through Superelectrophilic Activation of Pyridinecarboxaldehydes/Quinolinecarboxaldehydes with Boron Trifluoride Monohydrate. Heterocycles, 2008, 76, 783.	0.4	26
171	Efficient 1,4-addition of \hat{l}_{\pm} -substituted fluoro(phenylsulfonyl)methane derivatives to \hat{l}_{\pm} , \hat{l}^2 -unsaturated compounds. Beilstein Journal of Organic Chemistry, 2008, 4, 17.	1.3	49
172	Novel nucleophilic and electrophilic fluoroalkylation methods. Current Opinion in Drug Discovery & Development, 2008, 11, 793-802.	1.9	5
173	Effect of carbonates/phosphates as nucleophilic catalysts in dimethylformamide for efficient cyanosilylation of aldehydes and ketones. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3026-3030.	3.3	44
174	New Solid-Phase Bound Electrophilic Difluoromethylating Reagent. ACS Combinatorial Science, 2007, 9, 920-923.	3.3	23
175	Gallium (III) triflate catalyzed efficient Strecker reaction of ketones and their fluorinated analogs. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3703-3706.	3.3	93
176	New Electrophilic Difluoromethylating Reagent. Organic Letters, 2007, 9, 1863-1866.	2.4	128
177	Structural Studies of Nonclassical Cyclobutylmethyl Cations by theab initioMethod. Journal of Organic Chemistry, 2007, 72, 3076-3080.	1.7	23
178	Selective Fluoroalkylations with Fluorinated Sulfones, Sulfoxides, and Sulfides. Accounts of Chemical Research, 2007, 40, 921-930.	7.6	325
179	Efficient One-Pot Synthesis of Fluorinated Benzimidazolines, Benzothiazolines, Benzoxazolines, and Dihydrobenzoxazinones Using Gallium(III) Triflate as a Catalyst. Organic Letters, 2007, 9, 179-182.	2.4	56
180	Stereoselective Monofluoromethylation of Primary and Secondary Alcohols by Using a Fluorocarbon Nucleophile in a Mitsunobu Reaction. Angewandte Chemie - International Edition, 2007, 46, 4933-4936.	7.2	100

#	Article	IF	Citations
181	Nucleophilic (phenylsulfinyl)difluoromethylation of carbonyl compounds with difluoromethyl phenyl sulfoxide. Journal of Fluorine Chemistry, 2007, 128, 1241-1247.	0.9	25
182	Chlorotrimethylsilaneâ^'Nitrate Salts as Oxidants:Â Direct Oxidative Conversion of Thiols and Disulfides to Sulfonyl Chlorides. Journal of Organic Chemistry, 2007, 72, 5847-5850.	1.7	80
183	PVP-SO2 complex as a solid mild acid catalyst for efficient one pot, three component, Strecker synthesis of $\hat{l}\pm\hat{a}$ aminonitriles. Catalysis Letters, 2007, 114, 1-7.	1.4	39
184	BF3-H2O catalyzed Fries rearrangement of phenolic esters. Catalysis Letters, 2007, 114, 24-29.	1.4	20
185	Synthesis of trifluoromethyl-imines by solid acid/superacid catalyzed microwave assisted approach. Journal of Fluorine Chemistry, 2007, 128, 587-594.	0.9	44
186	Synthesis of 1,1-difluoroethylsilanes and their application for the introduction of the 1,1-difluoroethyl group. Journal of Fluorine Chemistry, 2007, 128, 1098-1103.	0.9	19
187	Facile Synthesis of TMS-Protected Trifluoromethylated Alcohols Using Trifluoromethyltrimethylsilane (TMSCF3) and Various Nucleophilic Catalysts in DMF. Journal of Organic Chemistry, 2006, 71, 6806-6813.	1.7	78
188	BF3·2CF3CH2OH (BF3·2TFE), an Efficient Superacidic Catalyst for Some Organic Synthetic Transformations. Journal of Organic Chemistry, 2006, 71, 3952-3958.	1.7	49
189	Electrophilic Intermediates and Their Reactions in Superacids. Journal of Organic Chemistry, 2006, 71, 3661-3676.	1.7	26
190	Preparation of Tri- and Difluoromethylated Amines from Aldimines Using (Trifluoromethyl)trimethylsilane. Organic Letters, 2006, 8, 3589-3592.	2.4	70
191	Ab Initio/GIAOâ^'CCSD(T) Study of Propenoyl (H2CCHâ^'CO+) and Isopentenoyl ((CH3)2CCHâ^'CO+) Cations and Their Superelectrophilic Protonated Dications1. Journal of Physical Chemistry A, 2006, 110, 1041-1045.	1.1	12
192	Construction of Asymmetric Fluorinated Carbon Centers. Angewandte Chemie - International Edition, 2006, 45, 2172-2174.	7.2	139
193	Superacidic Activation of Maleimide and Phthalimide and Their Reactions with Cyclohexane and Arenes. European Journal of Organic Chemistry, 2006, 2006, 4861-4866.	1.2	29
194	Palladium-katalysierte Reduktion von Mehrfachbindungen mit Mg/CH3OH. Angewandte Chemie, 2006, 93, 107-107.	1.6	6
195	Fluoride-induced nucleophilic (phenylthio)difluoromethylation of carbonyl compounds with [difluoro(phenylthio)methyl]trimethylsilane (TMS–CF2SPh). Journal of Fluorine Chemistry, 2005, 126, 527-532.	0.9	35
196	Nucleophilic difluoromethylation and difluoromethylenation using bromodifluoromethyl phenyl sulfone. Journal of Fluorine Chemistry, 2005, 126, 1361-1367.	0.9	74
197	Convenient Synthesis of Difluoromethyl Alcohols from Both Enolizable and Non-Enolizable Carbonyl Compounds with Difluoromethyl Phenyl Sulfone. European Journal of Organic Chemistry, 2005, 2005, 2218-2223.	1.2	65
198	Highly Enantioselective Organocatalytic Hydroxyalkylation of Indoles with Ethyl Trifluoropyruvate. Angewandte Chemie - International Edition, 2005, 44, 3086-3089.	7.2	177

#	Article	IF	CITATIONS
199	Difluoromethyl Phenyl Sulfone, a Difluoromethylidene Equivalent: Use in the Synthesis of 1,1-Difluoro-1-alkenes ChemInform, 2005, 36, no.	0.1	O
200	Nucleophilic Difluoromethylation of Primary Alkyl Halides Using Difluoromethyl Phenyl Sulfone as a Difluoromethyl Anion Equivalent ChemInform, 2005, 36, no.	0.1	0
201	N-Halosuccinimide/BF3?H2O, Efficient Electrophilic Halogenating Systems for Aromatics ChemInform, 2005, 36, no.	0.1	0
202	Convenient Synthesis of Difluoromethyl Alcohols from Both Enolizable and Non-Enolizable Carbonyl Compounds with Difluoromethyl Phenyl Sulfone ChemInform, 2005, 36, no.	0.1	0
203	Gallium (III) triflate catalyzed dehydration of aldoximes. Catalysis Letters, 2005, 101, 141-143.	1.4	70
204	Gallium (III) Triflate Catalyzed Beckmann Rearrangement. Catalysis Letters, 2005, 103, 165-168.	1.4	38
205	New Nucleophilic Fluoroalkylation Chemistry. ACS Symposium Series, 2005, , 16-56.	0.5	17
206	Ionic Liquid and Solid HF Equivalent Amine-Poly(Hydrogen Fluoride) Complexes Effecting Efficient Environmentally Friendly Isobutaneâ°Isobutylene Alkylation. Journal of the American Chemical Society, 2005, 127, 5964-5969.	6.6	106
207	Preparation of α,α-difluoroalkanesulfonic acids. Journal of Fluorine Chemistry, 2004, 125, 595-601.	0.9	41
208	Direct Oxidation of Azides to Nitro Compounds. Angewandte Chemie - International Edition, 2004, 43, 26-28.	7.2	20
209	Difluoromethyl Phenyl Sulfone, a Difluoromethylidene Equivalent: Use in the Synthesis of 1,1-Difluoro-1-alkenes. Angewandte Chemie - International Edition, 2004, 43, 5203-5206.	7.2	80
210	Direct Oxidation of Azides to Nitro Compounds ChemInform, 2004, 35, no.	0.1	0
211	ipso-Nitration of Arylboronic Acids with Chlorotrimethylsilaneâ€"Nitrate Salts ChemInform, 2004, 35, no.	0.1	O
212	High efficiency direct methanol fuel cell based on poly(styrenesulfonic) acid (PSSA)–poly(vinylidene) Tj ETQq0	0 0 rgBT /	Overlock 10 1
213	ipso-Nitration of Arylboronic Acids with Chlorotrimethylsilaneâ°'Nitrate Salts. Organic Letters, 2004, 6, 2205-2207.	2.4	130
214	N-Halosuccinimide/BF3â^'H2O, Efficient Electrophilic Halogenating Systems for Aromatics. Journal of the American Chemical Society, 2004, 126, 15770-15776.	6.6	303
215	Nucleophilic Difluoromethylation of Primary Alkyl Halides Using Difluoromethyl Phenyl Sulfone as a Difluoromethyl Anion Equivalent. Organic Letters, 2004, 6, 4315-4317.	2.4	76
216	Reactions of 2-, 3-, and 4-Quinolinols with Cyclohexane and Benzene in Superacids. Heterocycles, 2004, 62, 757.	0.4	36

#	Article	IF	Citations
217	Superacidic Trifluoromethanesulfonic Acid-Induced Cycli-Acyalkylation of Aromatics. Catalysis Letters, 2003, 87, 109-112.	1.4	53
218	Title is missing!. Catalysis Letters, 2003, 85, 1-6.	1.4	63
219	Expedient synthesis of [18F]-labeled ?-trifluoromethyl ketones. Journal of Labelled Compounds and Radiopharmaceuticals, 2003, 46, 1087-1092.	0.5	14
220	Synthesis of 1,3-Bis(N,N-difluoroamino)adamantane: Addition of Difluoramino Radicals to 1,3-Dehydroadamantane ChemInform, 2003, 34, no.	0.1	0
221	Preparation of Tri- and Difluoromethylsilanes via an Unusual Magnesium Metal-Mediated Reductive Tri- and Difluoromethylation of Chlorosilanes Using Tri- and Difluoromethyl Sulfides, Sulfoxides, and Sulfones ChemInform, 2003, 34, no.	0.1	0
222	Alkoxide- and Hydroxide-Induced Nucleophilic Trifluoromethylation Using Trifluoromethyl Sulfone or Sulfoxide ChemInform, 2003, 34, no.	0.1	0
223	Difluoromethyl Phenyl Sulfone as a Selective Difluoromethylene Dianion Equivalent: One-Pot Stereoselective Synthesis ofanti-2,2-Difluoropropane-1,3-diols. Angewandte Chemie - International Edition, 2003, 42, 5216-5219.	7.2	84
224	Preparation of TMS protected trifluoromethylated alcohols using trimethylamine N-oxide and trifluoromethyltrimethylsilane (TMSCF3). Journal of Fluorine Chemistry, 2003, 123, 61-63.	0.9	38
225	A potentiometric method of monitoring methanol crossover through polymer electrolyte membranes of direct methanol fuel cells. Journal of Power Sources, 2003, 117, 98-101.	4.0	47
226	Preparation of Tri- and Difluoromethylsilanes via an Unusual Magnesium Metal-Mediated Reductive Tri- and Difluoromethylation of Chlorosilanes Using Tri- and Difluoromethyl Sulfides, Sulfoxides, and Sulfones. Journal of Organic Chemistry, 2003, 68, 4457-4463.	1.7	168
227	Alkoxide- and Hydroxide-Induced Nucleophilic Trifluoromethylation Using Trifluoromethyl Sulfone or Sulfoxide. Organic Letters, 2003, 5, 3253-3256.	2.4	101
228	Stereoselective Synthesis of Trifluoromethylated Vicinal Ethylenediamines with $\hat{l}\pm$ -AminoN-tert-Butanesulfinimines and TMSCF3. Journal of the American Chemical Society, 2002, 124, 6538-6539.	6.6	116
229	Stereoselective Synthesis of anti- \hat{l} ±-(Difluoromethyl)- \hat{l} 2-amino Alcohols by Boronic Acid Based Three-Component Condensation. Stereoselective Preparation of (2S,3R)-Difluorothreonine. Journal of Organic Chemistry, 2002, 67, 3718-3723.	1.7	124
230	Reactions of 5-, 6-, 7-, 8-Hydroxyquinolines and 5-Hydroxyisoquinoline with Benzene and Cyclohexane in Superacids1. Journal of Organic Chemistry, 2002, 67, 4330-4336.	1.7	42
231	Superacidic Activation of 1- and 3-Isoquinolinols and Their Electrophilic Reactions 1. Journal of Organic Chemistry, 2002, 67, 8943-8951.	1.7	41
232	Triphenylmethyldifluoramine: a stable reagent for the synthesis of gem-bis(difluoramines). Chemical Communications, 2002, , 1712-1713.	2.2	13
233	Superacid catalyzed reactions of 5-amino-1-naphthol with benzene and cyclohexane. Tetrahedron, 2002, 58, 5423-5426.	1.0	32
234	Synthesis of 1,3-bis(N,N-difluoroamino)adamantane: addition of difluoramino radicals to 1,3-dehydroadamantane. Journal of Fluorine Chemistry, 2002, 117, 103-105.	0.9	10

#	Article	IF	Citations
235	Stereoselective Synthesis of antiâ \in î \pm â \in (Difluoromethyl)â \in î²â \in amino Alcohols by Boronic Acid Based Threeâ \in Component Condensation. Stereoselective Preparation of (2S,3R)â \in Difluorothreonine Chemlnform, 2002, 33, 87-87.	0.1	0
236	Asymmetric Synthesis of Trifluoromethylated Allylic Amines Using \hat{l}_{\pm} , \hat{l}_{\pm}^2 -Unsaturated N-tert-Butanesulfinimines. Organic Letters, 2001, 3, 2847-2850.	2.4	119
237	Nafion-H catalysed sulfonylation of aromatics with arene/alkenesulfonic acids for the preparation of sulfones. Chemical Communications, 2001, , 1696-1697.	2.2	68
238	Acid-Catalyzed Isomerization of Pivalaldehyde to Methyl Isopropyl Ketone via a Reactive Protosolvated Carboxonium Ion Intermediateâ€. Journal of the American Chemical Society, 2001, 123, 11556-11561.	6.6	38
239	Nucleophilic trifluoromethylation tamed. Journal of Fluorine Chemistry, 2001, 112, 123-131.	0.9	298
240	Facile preparation of di- and monofluoromethyl ketones from trifluoromethyl ketones via fluorinated enol silyl ethers. Journal of Fluorine Chemistry, 2001, 112, 355-360.	0.9	46
241	Stereoselective Nucleophilic Trifluoromethylation of N-(tert-Butylsulfinyl)imines by Using Trimethyl(trifluoromethyl)silane. Angewandte Chemie - International Edition, 2001, 40, 589-590.	7.2	161
242	Ïf-Bishomoconjugation (Ïf-Bishomoaromaticity) in 4C/3(2)e Cationsâ€"Scope and Limitations. Angewandte Chemie - International Edition, 2001, 40, 911-914.	7.2	10
243	Nucleophilic Trifluoromethylation of <i>N</i> -Tosyl Aldimines. Synlett, 2001, 2001, 0077-0078.	1.0	79
244	Superacid-Catalyzed Selective Formylation-Rearrangement of Isoalkanes with Carbon Monoxide to Branched Ketones. Angewandte Chemie - International Edition, 2000, 39, 2547-2548.	7.2	18
245	Trifluoromethanesulfonic Acid Catalyzed Novel Friedel–Crafts Acylation of Aromatics with Methyl Benzoate. Tetrahedron, 2000, 56, 7199-7203.	1.0	80
246	A Facile Stereocontrolled Synthesis ofanti-α-(Trifluoromethyl)-β-amino Alcohols. Organic Letters, 2000, 2, 3173-3176.	2.4	96
247	Direct one step preparation and 13C-NMR spectroscopic characterization of alpha-ferrocenyl carbocations derived from ferrocene and carbonyl compounds in trifluoroacetic acid medium1a. Journal of the Brazilian Chemical Society, 1999, 10, 313-316.	0.6	3
248	Nafion-H Catalyzed Isomerization of Glycidic to \hat{l} ±-Hydroxy- \hat{l}^2 , \hat{j}^3 -unsaturated Esters: Application in the Synthesis of a Trifluoromethylated Vinylic Epoxide. Synlett, 1999, 1999, 363-365.	1.0	15
249	Trifluoromethanesulfonic Acid Catalyzed Preparation of Symmetrical Diaryl Sulfoxides from Arenes and Thionyl Chloride. Synlett, 1999, 1999, 1397-1398.	1.0	29
250	Acid atalyzed isobutane–isobutylene alkylation in liquid carbon dioxide solution. Catalysis Letters, 1999, 61, 105-110.	1.4	16
251	Nafion-H Catalysed Intramolecular Friedel-Crafts Acylation: Formation of Cyclic Ketones and Related Heterocycles. Synlett, 1999, 1999, 1067-1068.	1.0	80
252	Search for Long-Lived 1,3-Carbodications and Preparation of the Persistent 1,1,3,3-Tetracyclopropyl-1,3-propanediyl Dication1. Journal of the American Chemical Society, 1999, 121, 9994-9998.	6.6	21

#	Article	IF	Citations
253	Electrophilic Fluorination of Aromatics with Selectfluorâ, ¢ and Trifluoromethanesulfonic Acid ¹ . Israel Journal of Chemistry, 1999, 39, 207-210.	1.0	30
254	Direct Preparation of Trifluoromethyl Ketones from Carboxylic Esters: Trifluoromethylation with (Trifluoromethyl)trimethylsilane. Angewandte Chemie - International Edition, 1998, 37, 820-821.	7.2	136
255	1H, 13C, 15N NMR and Theoretical Study of Protonated Carbamic Acids and Related Compounds1. Journal of Organic Chemistry, 1998, 63, 7993-7998.	1.7	28
256	Preparation of 3,3-Diaryloxindoles by Superacid-Induced Condensations of Isatins and Aromatics with a Combinatorial Approach. Journal of Organic Chemistry, 1998, 63, 4481-4484.	1.7	160
257	Mild Preparation of Haloarenes by Ipso-Substitution of Arylboronic Acids with N-Halosuccinimides. Synlett, 1998, 1998, 141-142.	1.0	84
258	Superacid Activated Condensation of Parabanic Acid and Derivatives with Arenes. A New Synthesis of Phenytoin and 5,5-Diarylhydantoins. Synlett, 1998, 1998, 918-920.	1.0	15
259	Direct Electroâ€oxidation of Dimethoxymethane, Trimethoxymethane, and Trioxane and Their Application in Fuel Cells. Journal of the Electrochemical Society, 1997, 144, 4195-4201.	1.3	46
260	Preparation of Condensed Aromatics by Superacidic Dehydrative Cyclization of Aryl Pinacols and Epoxides1a. Journal of Organic Chemistry, 1997, 62, 6666-6671.	1.7	55
261	Trimethylperoxonium Ion, CH3OO(CH3)2+Â1. Journal of the American Chemical Society, 1997, 119, 9572-9573.	6.6	6
262	The Protiotetramethylammonium Dication (CH3)3NCH42+:Â Hydrogen/Deuterium Exchange and Calculational Studies. Search for the Parent Protioammonium Dication NH52+Â1. Journal of the American Chemical Society, 1997, 119, 4594-4598.	6.6	13
263	2,6-Dimethylmesitylene-2,6-diyl Dication, a Unique Dienylâ°'Allyl Dication and Its Comparison with Bisallylic Benzene Dication1. Journal of the American Chemical Society, 1997, 119, 3407-3408.	6.6	13
264	Preparation, 13C NMR/DFT/IGLO Study of Benzylic Mono- and Dications, and Attempted Preparation of a Trication1. Journal of the American Chemical Society, 1997, 119, 12923-12928.	6.6	21
265	XH52+ Dications and XH63+ Trications (X = N, P, and As)1. Journal of the American Chemical Society, 1997, 119, 12984-12985.	6.6	14
266	Preparation of and Fluoroalkylation with (Chlorodifluoromethyl)trimethylsilane, Difluorobis(trimethylsilyl)methane, and 1,1,2,2-Tetrafluoro-1,2-bis(trimethylsilyl)ethane. Journal of the American Chemical Society, 1997, 119, 1572-1581.	6.6	115
267	Catching an Elusive Cation. Science, 1997, 276, 756-757.	6.0	4
268	Preparation and Characterization oftrans-1,4-Diazido-1,4-dinitrocyclohexane andexo-2,5-Diazido-endo-2,5-dinitronorbornane:Â Stable Geminal Azidoâ [^] Nitro Compounds. Journal of Organic Chemistry, 1997, 62, 1872-1874.	1.7	13
269	Perfluoroalkylation with Organosilicon Reagents. Chemical Reviews, 1997, 97, 757-786.	23.0	972
270	Triprotonated Hydrogen Sulfide: Pentacoordinate Sulfonium Trication SH ³⁺ ₅ and the Search for its Parent Pentacoordinate Oxonium Trication OH ³⁺ ₅ . Chemistry - A European Journal, 1997, 3, 1039-1041.	1.7	5

#	Article	IF	CITATIONS
271	Silylcarboxonium and Silyloxonium Ion Intermediates of the Cationic Ring-Opening Polymerization of Lactones and Tetrahydrofuran Initiated by Electrophilic Trimethylsilylating Agents1. Macromolecules, 1996, 29, 1857-1861.	2.2	10
272	Trihalomethyl Cations and Their Superelectrophilic Activation1. Journal of the American Chemical Society, 1996, 118, 1446-1451.	6.6	49
273	Protioacyl Dications:Â Hydrogen/Deuterium Exchange, Rearrangements, and Theoretical Studies1. Journal of the American Chemical Society, 1996, 118, 10423-10428.	6.6	27
274	2-Triaxanemethyl Cation and 2,10-para-[32.56]Octahedranedimethyl Dication. Angewandte Chemie International Edition in English, 1996, 35, 1499-1501.	4.4	14
275	Acidity dependence of the trifluoromethanesulfonic acid catalyzed isobutane-isobutylene alkylation modified with trifluoroacetic acid or water. Applied Catalysis A: General, 1996, 146, 107-117.	2.2	51
276	Facile Preparation of (Trifluoromethyl)tributyltin and Transtrifluoromethylation of Disilyl Sulfides to the Corresponding Trifluoromethylsilanes1. Synlett, 1996, 1996, 151-153.	1.0	22
277	Mimicry with gold. Nature, 1995, 377, 481-482.	13.7	2
278	Onium Ions. 44. Cubyl Onium Ions: Cubylcarboxonium, Cubylacylium, and Dimethyl Cubyl-1,4-dihalonium Ions. Journal of the American Chemical Society, 1995, 117, 12107-12113.	6.6	17
279	Protonation of Benzocyclobutene with Superacid: Cram's Phenonium Ion (Spiro[5.2]octa-5,7-dien-4-yl) Tj ETQq1 1	l 8.78431 [,]	4 _{gg} BT /Ove
280	1,3,5,7-Adamantanetetrakis(.alpha.,.alphadiphenylmethyl)tetrayl Tetracation: A Stable Tetrahedrally Arrayed Tetracation. Journal of the American Chemical Society, 1995, 117, 12005-12006.	6.6	16
281	(Hexaphenyltrimethylene)methane Dication and Related Carbocations. Journal of the American Chemical Society, 1995, 117, 11205-11210.	6.6	17
282	Trisilyloxonium Ions: Preparation, NMR Spectroscopy, Ab Initio/IGLO Studies, and Their Role in Cationic Polymerization of Cyclosiloxanes. Journal of the American Chemical Society, 1995, 117, 8962-8966.	6.6	75
283	Preparation and 13C NMR Spectroscopic Study of Disubstituted Adamantane-1,3-dimethyldiyl Dications. Journal of Organic Chemistry, 1995, 60, 7351-7354.	1.7	16
284	Superacid-Catalyzed Condensation of Benzaldehyde with Benzene. Study of Protonated Benzaldehydes and the Role of Superelectrophilic Activation. Journal of the American Chemical Society, 1995, 117, 11211-11214.	6.6	86
285	Nitration of Strongly Deactivated Aromatics with Superacidic Mixed Nitric-Triflatoboric Acid (HNO3/2CF3SO3H-B(O3SCF3)3). Journal of Organic Chemistry, 1995, 60, 7348-7350.	1.7	39
286	Convenient and Safe Electrochemical Synthesis of (Trifluoromethyl)trimethylsilane1a. Synlett, 1994, 1994, 1057-1058.	1.0	27
287	Aluminum Chloride Catalyzed Nitration of Aromatics with Sodium Nitrate/Chlorotrimethylsilane. Synthesis, 1994, 1994, 468-469.	1.2	19
288	Protio-2-propyl Dication (Propane Dication, C3H82+): Hydrogen/Deuterium Exchange and Theoretical Study. Differentiation of Reactive Gitonic (Proximal) from Stable Distonic (Distant) Dications and the Protosolvolytic Activation of Carbocations. Journal of the American Chemical Society, 1994, 116, 3187-3191.	6.6	29

#	Article	IF	Citations
289	Direct Fluorination of Diarylacetylenes to Diaryltetrafluoroethanes with Convenient F2 Equivalent Nitrosonium Tetrafluoroborate-Pyridinium Polyhydrogen Fluoride. Journal of Organic Chemistry, 1994, 59, 6493-6494.	1.7	43
290	Electrophilic Fluorination of Methane with "F+" Equivalent N2F+ and NF4+ Salts. Journal of the American Chemical Society, 1994, 116, 5671-5673.	6.6	29
291	Chemistry in superacids. 12. Carbonic acid and its mono- and diprotonation: NMR, ab initio, and IGLO investigation. Journal of the American Chemical Society, 1993, 115, 2236-2238.	6.6	37
292	Chemistry in superacids. 13. Protio-tert-butyl dication ((H3C)2C+CH4+): hydrogen-deuterium exchange and theoretical study. The role of protosolvation on alkyl cation reactivity in superacidic solution. Journal of the American Chemical Society, 1993, 115, 6985-6986.	6.6	34
293	Synthetic methods and reactions. 188. Triflic acid catalyzed phenylamination of aromatics with phenyl azide. Journal of Organic Chemistry, 1993, 58, 6900-6901.	1.7	26
294	Stable carbocations. 290. trans-Cyclopropane-1,2-diylbis(dicyclopropylmethylium) dication, a unique cyclopropyl stabilized carbodication. Journal of Organic Chemistry, 1993, 58, 1639-1640.	1.7	12
295	Synthetic methods and reactions. 181. Iodination of deactivated aromatics with N-iodosuccinimide in trifluoromethanesulfonic acid (NIS-CF3SO3H) via in situ generated superelectrophilic iodine(I) trifluoromethanesulfonate. Journal of Organic Chemistry, 1993, 58, 3194-3195.	1.7	182
296	Convenient Preparation of Alkyl Nitrates Free of Nitrites with Potassium Nitrate and Boron Trifluoride Hydrate. Synthesis, 1993, 1993, 207-208.	1.2	22
297	Poly-4-vinylpyridinium Poly(Hydrogen Fluoride): A Solid Hydrogen Fluoride Equivalent Reagent. Synthesis, 1993, 1993, 693-699.	1.2	49
298	Boron Trifluoride Monohydrate Catalyzed One-Flask 2,2,2-Trifluoro-1-(ethylthio)ethylation of Aromatics with Trifluoroacetaldehyde Hydrate and Ethanethiol1. Synlett, 1993, 1993, 32-34.	1.0	13
299	Superelectrophilic Tscherniac Amidomethylation of Aromatics withN-Hydroxymethylphthalimide in Trifluoromethanesulfonic Acid. Synthesis, 1993, 1993, 1077-1079.	1.2	17
300	lonic Hydrogenation with Triethylsilane-Trifluoroacetic Acid-Ammonium Fluoride or Triethylsilane-Pyridinium Poly(hydrogen fluoride)1. Synlett, 1992, 1992, 647-650.	1.0	36
301	Boron Trifluoride Monohydrate Catalyzed One-Flask Preparation of Sulfides from Carbonyl Compounds with Thiols and Triethylsilane. Synthesis, 1992, 1992, 465-466.	1.2	43
302	Preparation and carbon 13 NMR spectroscopic study of the 2-(adamantylidenemethyl)-2-adamantyl and 2-adamantylidene-1,1-dicyclopropylethyl cations. Journal of Organic Chemistry, 1992, 57, 6431-6434.	1.7	12
303	Long-lived cyclopropylcarbinyl cations. Chemical Reviews, 1992, 92, 69-95.	23.0	190
304	Considered onium ions. Part 40. Protonitronium dication, (NO2H2+). Journal of the American Chemical Society, 1992, 114, 5608-5609.	6.6	35
305	Carbon-13 NMR spectroscopic study of 2-[1-(trimethylsilyl)vinyl]-2-adamantyl cation, the first .betasilyl-substituted carbocation. Journal of the American Chemical Society, 1992, 114, 3076-3078.	6.6	32
306	Stable carbocations. 285. 1-Ferrocenyl-1-cyclopropyl cation: the first long-lived cyclopropyl cation. Journal of the American Chemical Society, 1992, 114, 1097-1098.	6.6	36

#	Article	IF	CITATIONS
307	Boron trifluoride monohydrate, a highly efficient catalyst for thioacetalrzation [1]. Catalysis Letters, 1992, 13, 55-59.	1.4	11
308	Solid superacid-catalyzed organic synthesis. 4. Perfluorinated resinsulfonic acid (Nafion-H) catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes. Journal of Organic Chemistry, 1991, 56, 2089-2091.	1.7	73
309	Preparation of trifluoromethyl and other perfluoroalkyl compounds with (perfluoroalkyl)trimethylsilanes. Journal of Organic Chemistry, 1991, 56, 984-989.	1.7	269
310	Organic reactions catalyzed by solid superacids. 5. Perfluorinated sulfonic acid resin (Nafion-H) catalyzed intramolecular Friedel-Crafts acylation. Journal of Organic Chemistry, 1991, 56, 3955-3957.	1.7	70
311	Oxyfunctionalization of Hydrocarbons; 15. Electrophilic Hydroxylation of Aromatics with Sodium Perborate/Trifluoromethanesulfonic Acid1. Synlett, 1991, 1991, 39-40.	1.0	23
312	Tris(1-adamantyl)methyl cation: a most highly crowded persistent carbocation. Journal of the American Chemical Society, 1990, 112, 6422-6423.	6.6	12
313	Onium ions. 39. Nitrogen-15 NMR spectroscopic investigation of nitrous and nitric acids in sulfuric acid solutions of varying acidities. Inorganic Chemistry, 1990, 29, 4965-4968.	1.9	24
314	Synthetic methods and reactions. 146. Olefins from crowded carbonyl compounds with tert-butyllithium (tert-butylmagnesium chloride)/thionyl chloride. Study of carbocationic reaction intermediates and rearrangement-cleavage under stable ion conditions using carbon-13 NMR spectroscopy. Journal of Organic Chemistry, 1990, 55, 1792-1796.	1.7	19
315	Stable carbocations. 279. Carbon-13 NMR spectroscopic study of .gammasubstituted tris(ethynyl)methyl cations. Journal of Organic Chemistry, 1990, 55, 6061-6062.	1.7	13
316	Stable carbocations. Part 276. Trihalomethyl cations. Journal of the American Chemical Society, 1989, 111, 8020-8021.	6.6	90
317	Protonated (protosolvated) onium ions (onlum dications). Research on Chemical Intermediates, 1989, 12, 141-159.	1.3	29
318	lonic polymerizations. 6. Friedel-Crafts dehydrohalogenative polymerization of acetyl and enolizable-substituted acetyl halides to polyketenes (poly(oxyacetylenes)). Journal of the American Chemical Society, 1989, 111, 9123-9124.	6.6	32
319	Stable carbocations. Part 274. 2-Seco[1.1.1.1]pagodyl cation. Strong stabilization of a trivalent carbocation by carbon-carbon .sigmabond hyperconjugation. Journal of the American Chemical Society, 1989, 111, 746-748.	6.6	33
320	Synthetic methods and reactions. 135. Single-step reductive isomerization of unsaturated polycyclics to C4n+6H4n+12 diamondoid cage hydrocarbons with sodium borohydride/triflic acid. Journal of Organic Chemistry, 1989, 54, 1450-1451.	1.7	20
321	Synthetic methods and reactions. 141. Fluoride-induced trifluoromethylation of carbonyl compounds with trifluoromethyltrimethylsilane (TMS-CF3). A trifluoromethide equivalent. Journal of the American Chemical Society, 1989, 111, 393-395.	6.6	500
322	Onium ions. 38. 7-Bromoniabicyclo [2.2.1] heptane: a stable 1,4-bridged bicyclic bromonium ion. Journal of the American Chemical Society, 1989, 111, 8726-8727.	6.6	25
323	Application of Gassman-Fentiman tool of increasing electron demand to stable carbocations using nuclear magnetic resonance spectroscopy. Reviews of Chemical Intermediates, 1988, 9, 65-116.	1.1	11
324	Chemical properties of dodecahedrane. The dodecahedryl cation and 1,16-dodecahedryl dication. Regioselective difunctionalization of the sphere. Journal of the American Chemical Society, 1988, 110, 1304-1305.	6.6	25

#	Article	IF	CITATIONS
325	Electrophilic reactions at single bonds. 22. Superacid-catalyzed electrophilic formylation of adamantane with carbon monoxide competing with Koch-Haaf carboxylation. Journal of the American Chemical Society, 1988, 110, 864-867.	6.6	66
326	Stable carbocations. 273. [1.1.1.1]- and [2.2.1.1] Pagodane dications: frozen two-electron Woodward-Hoffmann transition-state models. Journal of the American Chemical Society, 1988, 110, 7764-7772.	6.6	65
327	The tetrahydridosulfonium dication, H4S2+: hydrogen-deuterium exchange of hydrogen sulfide (DH2S+) in fluorosulfuric acid-d:antimony pentafluoride and hydrogen sulfide (D2HS+) in fluorosulfuric acid:antimony pentafluoride and theoretical calculations. The Journal of Physical Chemistry, 1988, 92, 878-880.	2.9	25
328	The anti-tricyclo [4.2.1.12,5] deca-3,7-diene-9,10-diyl dication: a sandwiched bishomoaromatic system. Journal of the American Chemical Society, 1987, 109, 911-912.	6.6	24
329	Nafion-HR catalyzed baeyer-villiger oxidation and ritter reaction[1]. Materials Chemistry and Physics, 1987, 17, 21-30.	2.0	42
330	Catalysis by solid super acids. 20. Nafion-H catalyzed reductive cleavage of acetals and ketals to ethers with triethylsilane. Journal of Organic Chemistry, 1986, 51, 2826-2828.	1.7	61
331	Perfluorinated Resinsulfonic Acid (Nafion-H®) Catalysis in Synthesis. Synthesis, 1986, 1986, 513-531.	1.2	306
332	Bridgehead adamantyl, diamantyl, and related cations and dications. Journal of the American Chemical Society, 1985, 107, 2764-2772.	6.6	86
333	Considered stable carbocations. 263. Preparation and carbon-13 NMR spectroscopic study of 2,6-disubstituted 2,6-adamantanediyl dications. Journal of Organic Chemistry, 1985, 50, 3985-3988.	1.7	13
334	Electrophilic reaction at single bonds. 21. Superacid-catalyzed alkylation of adamantane. Journal of the American Chemical Society, 1985, 107, 7541-7545.	6.6	18
335	Onium ions. 30. Methyl- and ethylvinylhalonium ions. Journal of Organic Chemistry, 1985, 50, 2405-2406.	1.7	21
336	Considered carbocations. 265. Reinvestigation of the bicyclo [2.2.2] octane-1,4-diyl dication. Journal of Organic Chemistry, 1985, 50, 5255-5257.	1.7	11
337	Considered stable carbocations. 262. anti-Tricyclo[5.1.0.03,5]octa-2,6-diyl dications. Novel bis(cyclopropylcarbinyl) dications. Journal of the American Chemical Society, 1985, 107, 2920-2923.	6.6	17
338	Considered stable cations. 259. Application of the Gassman-Fentiman tool of increasing electron demand to the carbon-13 NMR spectroscopic study of 1-aryl-3-methylbut-2-enyl (allylic) and 2-arylpent-3-yn-2-yl (propargylic) cations. Journal of the American Chemical Society, 1985, 107, 3928-3935.	6.6	11
339	Onium ions. 32. Intermediacy of the parent diazonium ion (protonated dinitrogen, N2+H) in the diazotization of ammonia and its derivatives with nitrosonium tetrafluoroborate (15NO+BF4-) giving 15N14N+. Journal of the American Chemical Society, 1985, 107, 5282-5283.	6.6	11
340	Stable carbocations. 261. Deuterium isotope effects on the carbon-13 NMR spectra of 1-methylcyclobutyl and trishomocyclopropenyl cations. Journal of the American Chemical Society, 1985, 107, 6017-6019.	6.6	23
341	Oxygen-17 NMR spectroscopic study of substituted benzoyl cations. Journal of Organic Chemistry, 1984, 49, 4317-4319.	1.7	19
342	Considered stable carbocation. 250alphaNitrodiarylmethyl cations. Journal of the American Chemical Society, 1984, 106, 2378-2380.	6.6	16

#	Article	IF	Citations
343	Conclusion of the classical-nonclassical ion controversy based on the structural study of the 2-norbornyl cation. Accounts of Chemical Research, 1983, 16, 440-448.	7.6	145
344	Stable Carbodications. Angewandte Chemie International Edition in English, 1983, 22, 390-401.	4.4	86
345	Stable carbocations. 247. Comments on the application of the Gassman-Fentiman tool of increasing electron demand to the carbon-13 nuclear magnetic resonance spectroscopic study of substituted 2-aryl-2-norbornyl cations. Journal of Organic Chemistry, 1983, 48, 2146-2151.	1.7	17
346	Tin(IV) Chloride-Catalyzed Preparation of Aroyl Cyanides from Aroyl Chlorides and Cyanotrimethylsilane. Synthesis, 1983, 1983, 636-637.	1.2	24
347	Das <i>endo</i> å€3,10å€Dimethyltricyclo[5.2.1.0 ^{2,6}]decaâ€4,8å€dienâ€3,10å€diylâ€Dikation, ein i Bishomoaryl/Allylâ€Dikation, und seine Umlagerung in das symmetrische <i>cisâ€antiâ€cis</i> å€3,10å€Dimethyltricyclo[5.3.0.0 ^{2,6}]decaâ€4,8å€dienâ€3,10å€diylâ€Dikation. Chemie. 1983, 95, 726-727.		
348	Stable carbocations. Part 235. Solvolytic and stable ion studies of 1,1'-diadamantylmethyl cations. Journal of Organic Chemistry, 1982, 47, 1040-1047.	1.7	8
349	Stable carbocations. Part 239. Preparation and carbon-13 and nitrogen-15 NMR spectroscopic study of cyanocarbenium ions. Substituent effects on the extent of mesomeric nitrenium ion character in cyanodiphenylmethyl cations. The search for related stable .alphacyanocarbenium ions. Journal of the American Chemical Society, 1982, 104, 1628-1631.	6.6	34
350	Onium ions. 24. Oxygen-17 NMR spectroscopic study of oxonium and carboxonium ions. Journal of the American Chemical Society, 1982, 104, 2373-2376.	6.6	60
351	Stable carbocations. 238. Two- and threefold degenerate rearrangements in di- and trimethylcyclopropylcarbinyl cations. Journal of the American Chemical Society, 1982, 104, 1031-1033.	6.6	17
352	Stable carbocations. Part 236. A carbon-13 and silicon-29 NMR spectroscopic study of .alpha and .beta(trimethylsilyl)-substituted carbocations. Journal of the American Chemical Society, 1982, 104, 1349-1355.	6.6	53
353	High-Field 1H and 13C NMR Spectroscopic Study of the 2-Norbornyl Cation1a. Journal of the American Chemical Society, 1982, 104, 7105-7108.	6.6	52
354	Stable carbocations. 244. Use of 2-thienyl, 2-furyl, 5-ethyl-2-furyl, and protonated 4-acetylphenyl substituents in carbon-13 NMR chemical shift correlations. Journal of Organic Chemistry, 1982, 47, 3903-3909.	1.7	22
355	The spiro[2.5]oct-4-yl cation, a long-lived secondary cyclohexyl cation. Journal of the American Chemical Society, 1981, 103, 4646-4647.	6.6	10
356	Carbon-13 NMR spectroscopic study of the application of the "tool of increasing electron demand" to the 7-aryl-1-norbornenyl, 7-aryl-7-norbornyl, 2-aryl-2-bicyclo[2.1.1]hexyl, 1-aryl-1-cyclobutyl, and 3-aryl-3-nortricyclyl cations. Journal of the American Chemical Society, 1981, 103, 1122-1128.	6.6	21
357	Stable carbocations. 210sigmaBond bridged carbonium ions. 8. The chemistry of protoadamantane. 7. Rapidly equilibrating unsymmetrically bridged 1,3,5,7-tetramethyl- and rapidly equilibrating trivalent 1,2,3,5,7-pentamethyl-2-adamantyl cations. Addivity of carbon-13 NMR chemical shifts relating the classical vs. nonclassical nature of carbocations. Journal of the American Chemical Society, 1980, 102,	6.6	79
358	Stable carbocations. 225. Proton and carbon-13 NMR spectroscopic study of 9-fluorenyl cations. Journal of the American Chemical Society, 1980, 102, 4485-4492.	6.6	72
359	Stable carbocations. 224. Structure of cyclopropylcarbinyl and cyclobutyl cations. The 2,8-dimethyl-8,9-dehydro-2-adamantyl and 4-phenyl-2,5-dehydro-4-protoadamantyl cations. Journal of the American Chemical Society, 1980, 102, 1865-1868.	6.6	11
360	Stable carbocations. 223. Degenerate cyclopropylcarbinyl cation rearrangement in 2-bicyclo[n.1.0]alkyl cations. Journal of Organic Chemistry, 1980, 45, 965-969.	1.7	19

#	Article	IF	CITATIONS
361	Stable carbocations. 230. 2,5-Diphenyl-2,5-norbornyl dications. Journal of the American Chemical Society, 1980, 102, 6127-6130.	6.6	21
362	Stable carbocations. 232. Significant mesomeric nitrenium ion character of the cyanodiphenylmethyl cation. The first long-lived cyanocarbenium ion. Journal of the American Chemical Society, 1980, 102, 6640-6641.	6.6	54
363	Stable carbocations. 220. Carbon-13 NMR spectroscopic study of potential tris- and bishomocyclopropenyl cations. Journal of the American Chemical Society, 1979, 101, 3935-3939.	6.6	28
364	Onium ions. 21. Cyclopropylhalonium ions. Journal of the American Chemical Society, 1979, 101, 6463-6465.	6.6	10
365	Low-temperature carbon-13 nuclear magnetic resonance spectroscopic investigation of C4H7+. Evidence for an equilibrium involving the nonclassical bicyclobutonium ion and the bisected cyclopropylcarbinyl cation. Journal of the American Chemical Society, 1978, 100, 8016-8018.	6.6	52
366	Concerning the structure and modes of degenerate rearrangement of the nonclassical 1-methylcyclobutyl and related carbocations. Journal of the American Chemical Society, 1978, 100, 7085-7086.	6.6	19
367	Stable carbocations. 201. Comparison of carbon-13 nuclear magnetic resonance shifts and relative charge delocalization in para-substituted phenyl, alkyl, and cyclopropylcarbinyl cations. Journal of Organic Chemistry, 1977, 42, 2666-2671.	1.7	24
368	Stable carbocations. 206. The onset of .sigma. delocalization in substituted 2-phenyl-2-norbornyl cations as studied by carbon-13 nuclear magnetic resonance spectroscopy. The application of the "tool of increasing electron demand" to the 2-norbornyl system. Journal of the American Chemical Society, 1977, 99, 5683-5687.	6.6	29
369	Stable carbocations. 203. Proton and carbon-13 nuclear magnetic resonance spectroscopic study of 6,6-disubstituted fulvenium ions. Journal of Organic Chemistry, 1977, 42, 661-666.	1.7	27
370	Electrophilic Reactions of Phenols. , 0, , 605-660.		9