Erez Raz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5433384/publications.pdf

Version: 2024-02-01

53794 43889 10,548 94 45 91 citations h-index g-index papers 99 99 99 11159 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	A JAM-A–tetraspanin–αvβ5 integrin complex regulates contact inhibition of locomotion. Journal of Cell Biology, 2022, 221, .	5.2	6
2	Hand2 delineates mesothelium progenitors and is reactivated in mesothelioma. Nature Communications, 2022, 13, 1677.	12.8	17
3	Chemokine-biased robust self-organizing polarization of migrating cells in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118 , .	7.1	26
4	Zebrafish <i>dazl</i> regulates cystogenesis and germline stem cell specification during the primordial germ cell to germline stem cell transition. Development (Cambridge), 2021, 148, .	2.5	25
5	Zebrafish Primordial Germ Cell Migration. Frontiers in Cell and Developmental Biology, 2021, 9, 684460.	3.7	18
6	Heading towards a dead end: The role of DND1 in germ line differentiation of human iPSCs. PLoS ONE, 2021, 16, e0258427.	2.5	2
7	AMPK adapts metabolism to developmental energy requirement during dendrite pruning in Drosophila. Cell Reports, 2021, 37, 110024.	6.4	12
8	Germ cell migrationâ€"Evolutionary issues and current understanding. Seminars in Cell and Developmental Biology, 2020, 100, 152-159.	5.0	26
9	Using migrating cells as probes to illuminate features in live embryonic tissues. Science Advances, 2020, 6, .	10.3	6
10	E-cadherin focuses protrusion formation at the front of migrating cells by impeding actin flow. Nature Communications, 2020, 11, 5397.	12.8	20
11	Building Relationships: A Role for Innexins in Tissue Formation. Developmental Cell, 2020, 54, 428-430.	7.0	O
12	Dead end and Detour: The function of the RNA-binding protein Dnd in posttranscriptional regulation in the germline. Current Topics in Developmental Biology, 2020, 140, 181-208.	2.2	11
13	Bioorthogonal mRNA labeling at the poly(A) tail for imaging localization and dynamics in live zebrafish embryos. Chemical Science, 2020, 11, 3089-3095.	7.4	23
14	Retention of paternal DNA methylome in the developing zebrafish germline. Nature Communications, 2019, 10, 3054.	12.8	99
15	Tracking and line integration of diffuse cellular subdomains by mesh advection., 2019, 2019, 6018-6021.		1
16	Cellular Blebs and Membrane Invaginations Are Coupled through Membrane Tension Buffering. Biophysical Journal, 2019, 117, 1485-1495.	0.5	11
17	Fluid dynamics during bleb formation in migrating cells in vivo. PLoS ONE, 2019, 14, e0212699.	2.5	13
18	Rapid progression through the cell cycle ensures efficient migration of primordial germ cells – The role of Hsp90. Developmental Biology, 2018, 436, 84-93.	2.0	17

#	Article	IF	Citations
19	Spatio-temporal regulation of concurrent developmental processes by generic signaling downstream of chemokine receptors. ELife, 2018, 7, .	6.0	15
20	Holographic optical tweezersâ€based <i>in vivo</i> manipulations in zebrafish embryos. Journal of Biophotonics, 2017, 10, 1492-1501.	2.3	32
21	Bleb Expansion in Migrating Cells Depends on Supply of Membrane from Cell Surface Invaginations. Developmental Cell, 2017, 43, 577-587.e5.	7.0	45
22	The Vertebrate Protein Dead End Maintains Primordial Germ Cell Fate by Inhibiting Somatic Differentiation. Developmental Cell, 2017, 43, 704-715.e5.	7.0	85
23	Polarized actin and VE-cadherin dynamics regulate junctional remodelling and cell migration during sprouting angiogenesis. Nature Communications, 2017, 8, 2210.	12.8	129
24	Guidelines for morpholino use in zebrafish. PLoS Genetics, 2017, 13, e1007000.	3.5	255
25	Differences in Strength and Timing of the mtDNA Bottleneck between Zebrafish Germline and Non-germline Cells. Cell Reports, 2016, 16, 622-630.	6.4	58
26	Blood, blebs and lumen expansion. Nature Cell Biology, 2016, 18, 366-367.	10.3	3
27	D186/D190 is an allele-dependent determinant of HIV-1 Nef function. Virology, 2016, 498, 44-56.	2.4	2
28	Repulsive cues combined with physical barriers and cell–cell adhesion determine progenitor cell positioning during organogenesis. Nature Communications, 2016, 7, 11288.	12.8	38
29	Filopodia-based Wnt transport during vertebrate tissue patterning. Nature Communications, 2015, 6, 5846.	12.8	206
30	Chemokineâ€guided cell migration and motility in zebrafish development. EMBO Journal, 2015, 34, 1309-1318.	7.8	63
31	Chemokine-Dependent pH Elevation at the Cell Front Sustains Polarity in Directionally Migrating Zebrafish Germ Cells. Current Biology, 2015, 25, 1096-1103.	3.9	34
32	Editorial overview: Cell adhesion and migration. Current Opinion in Cell Biology, 2015, 36, iv-vi.	5.4	3
33	Zebrafish germ cells: motility and guided migration. Current Opinion in Cell Biology, 2015, 36, 80-85.	5.4	54
34	Correlative Light and Electron Microscopy of Rare Cell Populations in Zebrafish Embryos Using Laser Marks. Zebrafish, 2015, 12, 470-473.	1.1	7
35	Dynamic filopodia are required for chemokine-dependent intracellular polarization during guided cell migration in vivo. ELife, 2015, 4, .	6.0	49
36	Arteries are formed by vein-derived endothelial tip cells. Nature Communications, 2014, 5, 5758.	12.8	165

#	Article	IF	Citations
37	Simultaneous high-resolution detection of multiple transcripts combined with localization of proteins in whole-mount embryos. BMC Biology, 2014, 12, 55.	3.8	108
38	Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium. Development (Cambridge), 2014, 141, 3188-3196.	2.5	57
39	Temporal control over the initiation of cell motility by a regulator of G-protein signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11389-11394.	7.1	25
40	Small proteins, big roles: The signaling protein Apela extends the complexity of developmental pathways in the early zebrafish embryo. BioEssays, 2014, 36, 741-745.	2.5	10
41	The role and regulation of blebs in cell migration. Current Opinion in Cell Biology, 2013, 25, 582-590.	5.4	295
42	Turkey Must End Violent Response to Protests. Science, 2013, 341, 236-236.	12.6	2
43	On the robustness of germ cell migration and microRNA-mediated regulation of chemokine signaling. Nature Genetics, 2013, 45, 1264-1265.	21.4	5
44	\hat{l}^2 -arrestin control of late endosomal sorting facilitates decoy receptor function and chemokine gradient formation. Development (Cambridge), 2012, 139, 2897-2902.	2.5	35
45	Identification and Regulation of a Molecular Module for Bleb-Based Cell Motility. Developmental Cell, 2012, 23, 210-218.	7.0	61
46	Small RNAs in Germ Cell Development. Current Topics in Developmental Biology, 2012, 99, 79-113.	2.2	26
47	$G^{\hat{1}\hat{2}\hat{1}^3}$ signaling controls the polarization of zebrafish primordial germ cells by regulating Rac activity. Development (Cambridge), 2012, 139, 57-62.	2.5	22
48	Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors. Nature Protocols, 2011, 6, 1835-1846.	12.0	119
49	Regulation of <i>hub</i> mRNA stability and translation by miR430 and the dead end protein promotes preferential expression in zebrafish primordial germ cells. Developmental Dynamics, 2011, 240, 695-703.	1.8	32
50	Cxcl12 evolution – subfunctionalization of a ligand through altered interaction with the chemokine receptor. Development (Cambridge), 2011, 138, 2909-2914.	2.5	31
51	The nuts and bolts of germ-cell migration. Current Opinion in Cell Biology, 2010, 22, 715-721.	5.4	46
52	Prenylation-deficient G protein gamma subunits disrupt GPCR signaling in the zebrafish. Cellular Signalling, 2010, 22, 221-233.	3.6	18
53	A role for Rho GTPases and cell–cell adhesion in single-cell motility in vivo. Nature Cell Biology, 2010, 12, 47-53.	10.3	225
54	CXCR7 Functions as a Scavenger for CXCL12 and CXCL11. PLoS ONE, 2010, 5, e9175.	2.5	401

#	Article	IF	CITATIONS
55	HIV-1 Nef Interferes with Host Cell Motility by Deregulation of Cofilin. Cell Host and Microbe, 2009, 6, 174-186.	11.0	118
56	Germ cell migration in zebrafish is cyclopamine-sensitive but Smoothened-independent. Developmental Biology, 2009, 328, 342-354.	2.0	19
57	Chemokine signaling in embryonic cell migration: a fisheye view. Development (Cambridge), 2009, 136, 1223-1229.	2.5	103
58	Control of Dead end localization and activity $\hat{a} \in \text{``Implications for the function of the protein in antagonizing miRNA function. Mechanisms of Development, 2009, 126, 270-277.}$	1.7	50
59	Control over the morphology and segregation of Zebrafish germ cell granules during embryonic development. BMC Developmental Biology, 2008, 8, 58.	2.1	78
60	Sequential SDF1a and b-induced mobility guides Medaka PGC migration. Developmental Biology, 2008, 320, 319-327.	2.0	50
61	Control of Chemokine-Guided Cell Migration by Ligand Sequestration. Cell, 2008, 132, 463-473.	28.9	552
62	Killing the messenger. Cell Adhesion and Migration, 2008, 2, 69-70.	2.7	40
63	What Is Left Behindâ€"Quality Control in Germ Cell Migration. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe16.	3.9	29
64	RNA-Binding Protein Dnd1 Inhibits MicroRNA Access to Target mRNA. Cell, 2007, 131, 1273-1286.	28.9	655
65	A Role for Piwi and piRNAs in Germ Cell Maintenance and Transposon Silencing in Zebrafish. Cell, 2007, 129, 69-82.	28.9	989
66	Control of Receptor Internalization, Signaling Level, and Precise Arrival at the Target in Guided Cell Migration. Current Biology, 2007, 17, 1164-1172.	3.9	62
67	Attraction rules: germ cell migration in zebrafish. Current Opinion in Genetics and Development, 2006, 16, 355-359.	3.3	63
68	Found in Translation: A New Player in EMT. Developmental Cell, 2006, 11, 434-436.	7.0	4
69	Migration of Zebrafish Primordial Germ Cells: A Role for Myosin Contraction and Cytoplasmic Flow. Developmental Cell, 2006, 11, 613-627.	7.0	331
70	Germ Cells: Sex and Repression in Mice. Current Biology, 2005, 15, R600-R603.	3.9	9
71	Transition from non-motile behaviour to directed migration during early PGC development in zebrafish. Journal of Cell Science, 2005, 118, 4027-4038.	2.0	159
72	CXCR4 and Gab1 cooperate to control the development of migrating muscle progenitor cells. Genes and Development, 2005, 19, 2187-2198.	5.9	164

#	Article	IF	Citations
73	Development without germ cells: The role of the germ line in zebrafish sex differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4074-4079.	7.1	296
74	Guidance of primordial germ cell migration. Current Opinion in Cell Biology, 2004, 16, 169-173.	5.4	97
75	Signaling pathways controlling primordial germ cell migration in zebrafish. Journal of Cell Science, 2004, 117, 4787-4795.	2.0	89
76	Involvement of Pax6 and Otx2 in the forebrain-specific regulation of the vertebrate homeobox gene ANF/Hesx1. Developmental Biology, 2004, 269, 567-579.	2.0	45
77	Primordial germ cell migration in the chick and mouse embryo: the role of the chemokine SDF-1/CXCL12. Developmental Biology, 2004, 272, 351-361.	2.0	191
78	Autonomous Modes of Behavior in Primordial Germ Cell Migration. Developmental Cell, 2004, 6, 589-596.	7.0	88
79	dead end, a Novel Vertebrate Germ Plasm Component, Is Required for Zebrafish Primordial Germ Cell Migration and Survival. Current Biology, 2003, 13, 1429-1434.	3.9	399
80	Primordial germ-cell development: the zebrafish perspective. Nature Reviews Genetics, 2003, 4, 690-700.	16.3	258
81	The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development (Cambridge), 2003, 130, 4279-4286.	2.5	399
82	Production of maternal-zygotic mutant zebrafish by germ-line replacement. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 14919-14924.	7.1	202
83	Guidance of Primordial Germ Cell Migration by the Chemokine SDF-1. Cell, 2002, 111, 647-659.	28.9	629
84	Expression of a linker histone-like gene in the primordial germ cells in zebrafish. Mechanisms of Development, 2002, 117, 253-257.	1.7	38
85	Multiple Levels of Posttranscriptional Control Lead to Germ Line-Specific Gene Expression in the Zebrafish. Current Biology, 2002, 12, 289-294.	3.9	122
86	Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development (Cambridge), 2002, 129, 25-36.	2.5	105
87	Regulation of zebrafish primordial germ cell migration by attraction towards an intermediate target. Development (Cambridge), 2002, 129, 25-36.	2.5	30
88	A zebrafish <i>nanos</i> -related gene is essential for the development of primordial germ cells. Genes and Development, 2001, 15, 2877-2885.	5.9	440
89	The function and regulation of vasa-like genes in germ-cell development. Genome Biology, 2000, 1, reviews1017.1.	9.6	278
90	Vg1 RBP intracellular distribution and evolutionarily conserved expression at multiple stages during development. Mechanisms of Development, 1999, 88, 101-106.	1.7	53

#	Article	IF	CITATION
91	Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Current Biology, 1998, 8, 82-88.	3.9	135
92	\hat{l}^2 -Lactamase as a Marker for Gene Expression in Live Zebrafish Embryos. Developmental Biology, 1998, 203, 290-294.	2.0	21
93	Green fluorescent protein marks skeletal muscle in murine cell lines and zebrafish. Gene, 1996, 173, 89-98.	2.2	37
94	Blebs—Formation, Regulation, Positioning, and Role in Amoeboid Cell Migration. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	20