Lloyd Damien Stringer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5432272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Vibrational Communication of Scolypopa australis (Walker, 1851) (Hemiptera: Ricaniidae)—Towards a Novel Sustainable Pest Management Tool. Sustainability, 2022, 14, 185.	3.2	1

 $_{2}$ Influence of Irradiation on the Biology of the Brown Marmorated Stink Bug (Hemiptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 Td (P

3	Approaches for estimating benefits and costs of interventions in plant biosecurity across invasion phases. Ecological Applications, 2021, 31, e02319.	3.8	12
4	Mazes to Study the Effects of Spatial Complexity, Predation and Population Density on Mate Finding. Insects, 2020, 11, 256.	2.2	1
5	Will growing invasive arthropod biodiversity outpace our ability for eradication?. Ecological Applications, 2019, 29, e01992.	3.8	10
6	Optimising the seasonal deployment of surveillance traps for detection of incipient pest invasions. Crop Protection, 2019, 123, 36-44.	2.1	10
7	Effect of Lure Combination on Fruit Fly Surveillance Sensitivity. Scientific Reports, 2019, 9, 2653.	3.3	15
8	The Competitive Mating of Irradiated Brown Marmorated Stink Bugs, Halyomorpha halys, for the Sterile Insect Technique. Insects, 2019, 10, 411.	2.2	18
9	Trapping Brown Marmorated Stink Bugs: "The Nazgȗl―Lure and Kill Nets. Insects, 2019, 10, 433.	2.2	1
10	With or without pheromone habituation: possible differences between insect orders?. Pest Management Science, 2018, 74, 1259-1264.	3.4	11
11	Multiple-Lure Surveillance Trapping for Ips Bark Beetles, Monochamus Longhorn Beetles, and Halyomorpha halys (Hemiptera: Pentatomidae). Journal of Economic Entomology, 2018, 111, 2255-2263.	1.8	12
12	Plant pathogen eradication: determinants of successful programs. Australasian Plant Pathology, 2017, 46, 277-284.	1.0	16
13	Irradiation biology of male brown marmorated stink bugs: is there scope for the sterile insect technique?. International Journal of Radiation Biology, 2017, 93, 1357-1363.	1.8	12
14	Thigmotaxis Mediates Trail Odour Disruption. Scientific Reports, 2017, 7, 1670.	3.3	2
15	Management and eradication options for Queensland fruit fly. Population Ecology, 2017, 59, 259-273.	1.2	22
16	Eradication of tephritid fruit fly pest populations: outcomes and prospects. Pest Management Science, 2016, 72, 456-465.	3.4	88
17	Advance, retreat, resettle? Climate change could produce a zeroâ€sum game for invasive species. Austral Entomology, 2016, 55, 177-184	1.4	8
18	Spatial analysis of mass trapping: how close is close enough?. Pest Management Science, 2015, 71, 1452-1461.	3.4	34

LLOYD DAMIEN STRINGER

#	Article	IF	CITATIONS
19	Determinants of successful arthropod eradication programs. Biological Invasions, 2014, 16, 401-414.	2.4	124
20	Light brown apple moth (Epiphyas postvittana) (Lepidoptera: Tortricidae) colonization of California. Biological Invasions, 2014, 16, 1851-1863.	2.4	22
21	From integrated pest management to integrated pest eradication: technologies and future needs. Pest Management Science, 2014, 70, 179-189.	3.4	64
22	Volatiles from greenâ€lipped mussel as a lead to vespid wasp attractants. Journal of Applied Entomology, 2014, 138, 87-95.	1.8	16
23	<i>Vespula vulgaris</i> (Hymenoptera: Vespidae) gynes use a sex pheromone to attract males. Canadian Entomologist, 2013, 145, 389-397.	0.8	15
24	Attractiveness and competitiveness of irradiated light brown apple moths. Entomologia Experimentalis Et Applicata, 2013, 148, 203-212.	1.4	21
25	Communication Disruption of <l>Epiphyas postvittana</l> (Lepidoptera: Tortricidae) By Using Two Formulations at Four Point Source Densities in Vineyards. Journal of Economic Entomology, 2012, 105, 1694-1701.	1.8	9
26	Communication disruption of light brown apple moth (Epiphyas postvittana) using a four-component sex pheromone blend. Crop Protection, 2012, 42, 327-333.	2.1	9
27	Aerosol delivery of trail pheromone disrupts the foraging of the red imported fire ant, <i>Solenopsis invicta</i> . Pest Management Science, 2012, 68, 1572-1578.	3.4	4
28	Radiation Biology and Inherited Sterility of Light Brown Apple Moth (Lepidoptera: Tortricidae): Developing a Sterile Insect Release Program. Journal of Economic Entomology, 2011, 104, 1999-2008.	1.8	27
29	Argentine Ant Trail Pheromone Disruption is Mediated by Trail Concentration. Journal of Chemical Ecology, 2011, 37, 1143-1149.	1.8	18
30	Comparative Fitness of Irradiated Light Brown Apple Moths (Lepidoptera: Tortricidae) in a Wind Tunnel, Hedgerow, and Vineyard. Journal of Economic Entomology, 2011, 104, 1301-1308.	1.8	20
31	Modeling the Sterile Insect Technique for Suppression of Light Brown Apple Moth (Lepidoptera:) Tj ETQq1 1 0.7	784314 rgE 1.8	3T /Overlock 1
32	Sampling Efficacy for the Red Imported Fire Ant <i>Solenopsis invicta</i> (Hymenoptera: Formicidae). Environmental Entomology, 2011, 40, 1276-1284.	1.4	17
33	Trail Pheromone Disruption of Argentine Ant Trail Formation and Foraging. Journal of Chemical Ecology, 2010, 36, 122-128.	1.8	32
34	Trail Pheromone Disruption of Red Imported Fire Ant. Journal of Chemical Ecology, 2010, 36, 744-750.	1.8	18
35	The role of resource dispersion in promoting the co-occurrence of dominant and subordinate ant species. Oikos, 2010, 119, 659-668.	2.7	10
36	Ant dominance in urban areas. Urban Ecosystems, 2009, 12, 503-514.	2.4	22

#	Article	IF	CITATIONS
37	Attraction and antennal response of the common wasp, <i>Vespula vulgaris</i> (L.), to selected synthetic chemicals in New Zealand beech forests. Pest Management Science, 2009, 65, 975-981.	3.4	24
38	Pheromone Disruption of Argentine Ant Trail Integrity. Journal of Chemical Ecology, 2008, 34, 1602-1609.	1.8	35
39	Floral attractants for the female soybean looper, <i>Thysanoplusia orichalcea</i> (Lepidoptera:) Tj ETQq1 1 0.784	4314 rgBT 3.4	- /Qyerlock 10
40	The ant community response to the arrival of Monomorium sydneyenseforel (Hymenoptera:) Tj ETQq0 0 0 rgBT /0 $$	Dverlock 1 1.1	0 Tf 50 622 1 4
41	Foraging characteristics and intraspecific behaviour of the exotic species Monomorium sydneyense (Hymenoptera: Formicidae) in New Zealand, with implications for its management. New Zealand Journal of Zoology, 2007, 34, 25-34.	1.1	7
42	The influence of temperature and fineâ€scale resource distribution on resource sharing and domination in an ant community. Ecological Entomology, 2007, 32, 732-740.	2.2	20
43	Minor components modulate sensitivity to the pheromone antagonist Z11-14:Ac in male lightbrown apple moth, Epiphyas postvittana (Lepidoptera: Tortricidae) in the field. New Zealand Plant Protection, 0, 71, 293-298.	0.3	1