
Zachary E. Ross

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5431669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>P</i> Wave Arrival Picking and Firstâ€Motion Polarity Determination With Deep Learning. Journal of Geophysical Research: Solid Earth, 2018, 123, 5120-5129.	3.4	333
2	Hierarchical interlocked orthogonal faulting in the 2019 Ridgecrest earthquake sequence. Science, 2019, 366, 346-351.	12.6	284
3	Searching for hidden earthquakes in Southern California. Science, 2019, 364, 767-771.	12.6	212
4	PhaseLink: A Deep Learning Approach to Seismic Phase Association. Journal of Geophysical Research: Solid Earth, 2019, 124, 856-869.	3.4	136
5	3D fault architecture controls the dynamism of earthquake swarms. Science, 2020, 368, 1357-1361.	12.6	117
6	Aftershocks driven by afterslip and fluid pressure sweeping through a faultâ€fracture mesh. Geophysical Research Letters, 2017, 44, 8260-8267.	4.0	106
7	Abundant off-fault seismicity and orthogonal structures in the San Jacinto fault zone. Science Advances, 2017, 3, e1601946.	10.3	93
8	Reliable Realâ€Time Seismic Signal/Noise Discrimination With Machine Learning. Journal of Geophysical Research: Solid Earth, 2019, 124, 788-800.	3.4	80
9	The 2016 Kumamoto <i>M_w</i> Â=Â7.0 Earthquake: A Significant Event in a Fault–Volcano System. Journal of Geophysical Research: Solid Earth, 2017, 122, 9166-9183.	3.4	63
10	Pervasive Foreshock Activity Across Southern California. Geophysical Research Letters, 2019, 46, 8772-8781.	4.0	63
11	EikoNet: Solving the Eikonal Equation With Deep Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59, 10685-10696.	6.3	59
12	Toward reliable automated estimates of earthquake source properties from body wave spectra. Journal of Geophysical Research: Solid Earth, 2016, 121, 4390-4407.	3.4	50
13	Internal structure of the San Jacinto fault zone in the trifurcation area southeast of Anza, California, from data of dense seismic arrays. Geophysical Journal International, 2018, 213, 98-114.	2.4	44
14	Extracting Dispersion Curves From Ambient Noise Correlations Using Deep Learning. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58, 8932-8939.	6.3	30
15	Anomalously large complete stress drop during the 2016 <i>M</i> _{<i>w</i>} 5.2 Borrego Springs earthquake inferred by waveform modeling and nearâ€source aftershock deficit. Geophysical Research Letters, 2017, 44, 5994-6001.	4.0	28
16	Induced Earthquake Families Reveal Distinctive Evolutionary Patterns Near Disposal Wells. Journal of Geophysical Research: Solid Earth, 2018, 123, 8045-8055.	3.4	27
17	Evidence for Latent Crustal Fluid Injection Transients in Southern California From Longâ€Đuration Earthquake Swarms. Geophysical Research Letters, 2021, 48, e2021GL092465.	4.0	27
18	Dissipative Intraplate Faulting During the 2016 M _w 6.2 Tottori, Japan Earthquake. Journal of Geophysical Research: Solid Earth, 2018, 123, 1631-1642.	3.4	26

ZACHARY E. ROSS

#	Article	IF	CITATIONS
19	Diverse Volumetric Faulting Patterns in the San Jacinto Fault Zone. Journal of Geophysical Research: Solid Earth, 2018, 123, 5068-5081.	3.4	19
20	Seismic Wave Propagation and Inversion with Neural Operators. The Seismic Record, 2021, 1, 126-134.	3.1	19
21	A unified perspective of seismicity and fault coupling along the San Andreas Fault. Science Advances, 2022, 8, eabk1167.	10.3	19
22	Evolution of seismicity near the southernmost terminus of the San Andreas Fault: Implications of recent earthquake clusters for earthquake risk in southern California. Geophysical Research Letters, 2017, 44, 1293-1301.	4.0	18
23	Estimation of radiated energy using the KiK-net downhole records—old method for modern data. Geophysical Journal International, 2020, 221, 1029-1042.	2.4	17
24	Tectonic Inheritance With Dipping Faults and Deformation Fabric in the Brittle and Ductile Southern California Crust. Journal of Geophysical Research: Solid Earth, 2020, 125, e2020JB019525.	3.4	17
25	Directivity Modes of Earthquake Populations with Unsupervised Learning. Journal of Geophysical Research: Solid Earth, 2020, 125, e2019JB018299.	3.4	16
26	Slowâ€Growing and Extendedâ€Duration Seismicity Swarms: Reactivating Joints or Foliations in the Cahuilla Valley Pluton, Central Peninsular Ranges, Southern California. Journal of Geophysical Research: Solid Earth, 2019, 124, 3933-3949.	3.4	13
27	Reviving <i>m</i> B. Geophysical Journal International, 2019, 216, 1798-1816.	2.4	13
28	Deep Learning-Based Damage Mapping With InSAR Coherence Time Series. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.	6.3	13
29	Data-Driven Synthesis of Broadband Earthquake Ground Motions Using Artificial Intelligence. Bulletin of the Seismological Society of America, 2022, 112, 1979-1996.	2.3	11
30	Basal nucleation and the prevalence of ascending swarms in Long Valley caldera. Science Advances, 2021, 7, .	10.3	8
31	Anisotropy Variations in the Alaska Subduction Zone Based on Shearâ€Wave Splitting From Intraslab Earthquakes. Geochemistry, Geophysics, Geosystems, 2021, 22, e2020GC009558.	2.5	7
32	Southern California Earthquake Data Now Available in the AWS Cloud. Seismological Research Letters, 2021, 92, 3238-3247.	1.9	5
33	Inverse Migration of Seismicity Quiescence During the 2019 Ridgecrest Sequence. Journal of Geophysical Research: Solid Earth, 2021, 126, e2020JB020329.	3.4	3
34	Aftershock Moment Tensor Scattering. Geophysical Research Letters, 2022, 49, .	4.0	2
35	Bayesian Framework for Inversion of Secondâ€Order Stress Glut Moments: Application to the 2019 Ridgecrest Sequence Mainshock. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	1