Sabrina Strano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5430579/publications.pdf

Version: 2024-02-01

125 papers 7,644 citations

45 h-index 84 g-index

127 all docs

127
docs citations

127 times ranked

10333 citing authors

#	Article	IF	CITATIONS
1	CircPVT1: a pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals. Molecular Cancer, 2022, 21, 33.	19.2	23
2	$\label{lem:male} \begin{tabular}{ll} MALAT1-dependent hs a_circ_0076611 \ regulates \ translation \ rate in triple-negative breast cancer. \\ Communications Biology, 2022, 5, . \\ \end{tabular}$	4.4	8
3	YAP and TAZ: Monocorial and bicorial transcriptional co-activators in human cancers. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188756.	7.4	9
4	YAP/TAZ and EZH2 synergize to impair tumor suppressor activity of TGFBR2 in non-small cell lung cancer. Cancer Letters, 2021, 500, 51-63.	7.2	54
5	Aberrant transcriptional and post-transcriptional regulation of SPAG5, a YAP-TAZ-TEAD downstream effector, fuels breast cancer cell proliferation. Cell Death and Differentiation, 2021, 28, 1493-1511.	11.2	19
6	The Conundrum of Giglio Island: Unraveling the dynamics of an apparent resistance to COVID-19 – A descriptive study. Computational and Structural Biotechnology Journal, 2021, 19, 1467-1471.	4.1	1
7	CircRNAs: role in human diseases and potential use as biomarkers. Cell Death and Disease, 2021, 12, 468.	6.3	191
8	Arachidonic acid drives adaptive responses to chemotherapy-induced stress in malignant mesothelioma. Journal of Experimental and Clinical Cancer Research, 2021, 40, 344.	8.6	9
9	Insights into Intra-Tumoral Heterogeneity: Transcriptional Profiling of Chemoresistant MPM Cell Subpopulations Reveals Involvement of NFkB and DNA Repair Pathways and Contributes a Prognostic Signature. International Journal of Molecular Sciences, 2021, 22, 12071.	4.1	7
10	Oral mucositis: the hidden side of cancer therapy. Journal of Experimental and Clinical Cancer Research, 2020, 39, 210.	8.6	146
11	Metformin: Metabolic Rewiring Faces Tumor Heterogeneity. Cells, 2020, 9, 2439.	4.1	22
12	TMPRSS2, a SARS-CoV-2 internalization protease is downregulated in head and neck cancer patients. Journal of Experimental and Clinical Cancer Research, 2020, 39, 200.	8.6	25
13	Dihydroartemisinin: from malaria to the treatment of relapsing head and neck cancers. Annals of Translational Medicine, 2020, 8, 612-612.	1.7	3
14	Non-coding RNAs as Putative Biomarkers of Cancer-Associated Cachexia. Frontiers in Cell and Developmental Biology, 2020, 8, 257.	3.7	15
15	PI3K Inhibitors Curtail MYC-Dependent Mutant p53 Gain-of-Function in Head and Neck Squamous Cell Carcinoma. Clinical Cancer Research, 2020, 26, 2956-2971.	7.0	33
16	Transcriptional activation of the miR-17-92 cluster is involved in the growth-promoting effects of MYB in human Ph-positive leukemia cells. Haematologica, 2019, 104, 82-92.	3.5	24
17	Dropwort-induced metabolic reprogramming restrains YAP/TAZ/TEAD oncogenic axis in mesothelioma. Journal of Experimental and Clinical Cancer Research, 2019, 38, 349.	8.6	13
18	Targeting mutant p53 in cancer: the latest insights. Journal of Experimental and Clinical Cancer Research, 2019, 38, 290.	8.6	16

#	Article	IF	CITATIONS
19	The miR-205-5p/BRCA1/RAD17 Axis Promotes Genomic Instability in Head and Neck Squamous Cell Carcinomas. Cancers, 2019, 11, 1347.	3.7	31
20	<scp>cTAZ</scp> : a safeguard factor of antiviral response. EMBO Reports, 2019, 20, .	4.5	0
21	miR-96-5p targets PTEN expression affecting radio-chemosensitivity of HNSCC cells. Journal of Experimental and Clinical Cancer Research, 2019, 38, 141.	8.6	55
22	The circ <scp>RNA</scp> –micro <scp>RNA</scp> code: emerging implications for cancer diagnosis and treatment. Molecular Oncology, 2019, 13, 669-680.	4.6	300
23	MiRNA-513a-5p inhibits progesterone receptor expression and constitutes a risk factor for breast cancer: the hOrmone and Diet in the ETiology of breast cancer prospective study. Carcinogenesis, 2018, 39, 98-108.	2.8	29
24	HSP90 inhibition alters the chemotherapy-driven rearrangement of the oncogenic secretome. Oncogene, 2018, 37, 1369-1385.	5.9	19
25	MicroRNA-128-3p-mediated depletion of Drosha promotes lung cancer cell migration. Carcinogenesis, 2018, 39, 293-304.	2.8	32
26	Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model. Scientific Reports, 2018, 8, 13638.	3.3	14
27	Agave negatively regulates YAP and TAZ transcriptionally and post-translationally in osteosarcoma cell lines. Cancer Letters, 2018, 433, 18-32.	7.2	20
28	Long Non-coding MIR205HG Depletes Hsa-miR-590-3p Leading to Unrestrained Proliferation in Head and Neck Squamous Cell Carcinoma. Theranostics, 2018, 8, 1850-1868.	10.0	65
29	YAP and TAZ in Lung Cancer: Oncogenic Role and Clinical Targeting. Cancers, 2018, 10, 137.	3.7	89
30	MicroRNAs as Key Effectors in the p53 Network. International Review of Cell and Molecular Biology, 2017, 333, 51-90.	3.2	34
31	Altered peritumoral microRNA expression predicts head and neck cancer patients with a high risk of recurrence. Modern Pathology, 2017, 30, 1387-1401.	5.5	44
32	Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities. Cell Discovery, 2017, 3, 17022.	6.7	59
33	<i>MCM7</i> and its hosted miR-25, 93 and 106b cluster elicit YAP/TAZ oncogenic activity in lung cancer. Carcinogenesis, 2017, 38, 64-75.	2.8	52
34	Melatonin and Hippo Pathway: Is There Existing Cross-Talk?. International Journal of Molecular Sciences, 2017, 18, 1913.	4.1	34
35	Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers. International Journal of Molecular Sciences, 2017, 18, 961.	4.1	41
36	The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex. Genome Biology, 2017, 18, 237.	8.8	179

#	Article	IF	Citations
37	MiR-204 down-regulation elicited perturbation of a gene target signature common to human cholangiocarcinoma and gastric cancer. Oncotarget, 2017, 8, 29540-29557.	1.8	26
38	Oncogenic Intra-p53 Family Member Interactions in Human Cancers. Frontiers in Oncology, 2016, 6, 77.	2.8	59
39	<scp>YAP</scp> enhances the proâ€proliferative transcriptional activity of mutant p53 proteins. EMBO Reports, 2016, 17, 188-201.	4.5	154
40	MicroRNA expression as predictor of local recurrence risk in oral squamous cell carcinoma. Head and Neck, 2016, 38, E189-97.	2.0	45
41	Comet Assay in Cancer Chemoprevention. Methods in Molecular Biology, 2016, 1379, 99-105.	0.9	6
42	Cancer Gastric Chemoprevention: Isolation of Gastric Tumor-Initiating Cells. Methods in Molecular Biology, 2016, 1379, 129-137.	0.9	2
43	MicroRNAs: Non-coding fine tuners of receptor tyrosine kinase signalling in cancer. Seminars in Cell and Developmental Biology, 2016, 50, 133-142.	5.0	27
44	Cancer Chemoprevention. Methods in Molecular Biology, 2016, 1379, v.	0.9	0
45	Antibody Array as a Tool for Screening of Natural Agents in Cancer Chemoprevention. Methods in Molecular Biology, 2016, 1379, 189-199.	0.9	2
46	Mir 145/143: tumor suppressor, oncogenic microenvironmental factor orboth?. Aging, 2016, 8, 1153-1155.	3.1	10
47	Multitargeting activity of miR-24 inhibits long-term melatonin anticancer effects. Oncotarget, 2016, 7, 20532-20548.	1.8	49
48	Cdx2 Polymorphism Affects the Activities of Vitamin D Receptor in Human Breast Cancer Cell Lines and Human Breast Carcinomas. PLoS ONE, 2015, 10, e0124894.	2.5	21
49	What biomarkers (if any) for precise medicine?. Aging, 2015, 7, 533-534.	3.1	4
50	Gain of function mutant p53 proteins cooperate with E2F4 to transcriptionally downregulate RAD17 and BRCA1 gene expression. Oncotarget, 2015, 6, 5547-5566.	1.8	41
51	miR-181c associates with tumor relapse of high grade osteosarcoma. Oncotarget, 2015, 6, 13946-13961.	1.8	20
52	<i>Cynara scolymus</i> affects malignant pleural mesothelioma by promoting apoptosis and restraining invasion. Oncotarget, 2015, 6, 18134-18150.	1.8	36
53	Epigenetic silencing of miR-145-5p contributes to brain metastasis. Oncotarget, 2015, 6, 35183-35201.	1.8	75
54	Metformin-induced metabolic reprogramming of chemoresistant ALDHbright breast cancer cells. Oncotarget, 2014, 5, 4129-4143.	1.8	40

#	Article	IF	CITATIONS
55	Transcriptional Regulation by Mutant p53 and Oncogenesis. Sub-Cellular Biochemistry, 2014, 85, 91-103.	2.4	24
56	Tumor suppressor microRNAs: A novel nonâ€coding alliance against cancer. FEBS Letters, 2014, 588, 2639-2652.	2.8	58
57	Downregulation of microRNAs 145-3p and 145-5p Is a Long-term Predictor of Postmenopausal Breast Cancer Risk: The ORDET Prospective Study. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2471-2481.	2.5	24
58	MicroRNAs: short non-coding players in cancer chemoresistance. Molecular and Cellular Therapies, 2014, 2, 16.	0.2	31
59	VDR primary targets by genome-wide transcriptional profiling. Journal of Steroid Biochemistry and Molecular Biology, 2014, 143, 348-356.	2.5	36
60	microRNAs: short non-coding bullets of gain of function mutant p53 proteins. Oncoscience, 2014, 1, 427-433.	2.2	17
61	microRNAs and cancer metabolism reprogramming: the paradigm of metformin. Annals of Translational Medicine, 2014, 2, 58.	1.7	28
62	YAP and p73: A Matter of Mutual Specificity in Tumor Suppression., 2013,, 147-172.		3
63	MicroRNA-181a/b: Novel biomarkers to stratify breast cancer patients for PARPi treatment. Cell Cycle, 2013, 12, 1823-1823.	2.6	5
64	Gender, mutant p53 and PML: A growing "affaire―in tumor suppression and oncogenesis. Cell Cycle, 2013, 12, 1824-1825.	2.6	7
65	Blockage of melatonin receptors impairs p53-mediated prevention of DNA damage accumulation. Carcinogenesis, 2013, 34, 1051-1061.	2.8	52
66	PML Surfs into HIPPO Tumor Suppressor Pathway. Frontiers in Oncology, 2013, 3, 36.	2.8	14
67	Metformin: On Ongoing Journey across Diabetes, Cancer Therapy and Prevention. Metabolites, 2013, 3, 1051-1075.	2.9	26
68	Lifestyle Factors and MicroRNAs: A New Paradigm in Cancer Chemoprevention. MicroRNA (Shariqah,) Tj ETQq0	00 <u>fg</u> BT /C	Overlock 10 Tf
69	MYC Is Activated by USP2a-Mediated Modulation of MicroRNAs in Prostate Cancer. Cancer Discovery, 2012, 2, 236-247.	9.4	82
70	Butein impairs the protumorigenic activity of malignant pleural mesothelioma cells. Cell Cycle, 2012, 11, 132-140.	2.6	27
71	miR-204 targets Bcl-2 expression and enhances responsiveness of gastric cancer. Cell Death and Disease, 2012, 3, e423-e423.	6.3	160
72	Hippo and <i>rassf1a</i> Pathways: A Growing Affair. Molecular Biology International, 2012, 2012, 1-12.	1.7	26

#	Article	IF	Citations
73	miRâ€10b*, a master inhibitor of the cell cycle, is downâ€regulated in human breast tumours. EMBO Molecular Medicine, 2012, 4, 1214-1229.	6.9	85
74	Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation. Oncogene, 2012, 31, 2931-2942.	5.9	75
75	SASP mediates chemoresistance and tumor-initiating-activity of mesothelioma cells. Oncogene, 2012, 31, 3148-3163.	5.9	153
76	MicroRNA-128-2 targets the transcriptional repressor E2F5 enhancing mutant p53 gain of function. Cell Death and Differentiation, 2012, 19, 1038-1048.	11.2	136
77	Metformin elicits anticancer effects through the sequential modulation of DICER and c-MYC. Nature Communications, 2012, 3, 865.	12.8	198
78	ChIP-on-Chip Analysis of <i>In Vivo</i> Mutant p53 Binding To Selected Gene Promoters. OMICS A Journal of Integrative Biology, 2011, 15, 305-312.	2.0	36
79	The Hippo tumor suppressor pathway: a report on †the second workshop on the Hippo tumor suppressor pathway'. Cell Death and Differentiation, 2011, 18, 1388-1390.	11.2	2
80	Mutant p53 oncogenic functions are sustained by Plk2 kinase through an autoregulatory feedback loop. Cell Cycle, 2011, 10, 4330-4340.	2.6	74
81	Omics Underpins Novel Clues on VDR Chemoprevention Target in Breast Cancer. OMICS A Journal of Integrative Biology, 2011, 15, 337-346.	2.0	6
82	Allelic Expression Imbalance of TP53 Mutated and Polymorphic Alleles in Head and Neck Tumors. OMICS A Journal of Integrative Biology, 2011, 15, 375-381.	2.0	10
83	Urinary 6-Sulphatoxymelatonin Levels and Risk of Breast Cancer in Premenopausal Women: The ORDET Cohort. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 729-737.	2.5	60
84	<i>Id2</i> gene is a transcriptional target of the protein complex mutant p53/E2F1. Cell Cycle, 2010, 9, 2464-2466.	2.6	12
85	Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-likeand early progenitor-targeting drugs. Cell Cycle, 2010, 9, 2950-2959.	2.6	86
86	Stability strengths oncogenic activity. Cell Cycle, 2010, 9, 1456-1465.	2.6	0
87	EGF Decreases the Abundance of MicroRNAs That Restrain Oncogenic Transcription Factors. Science Signaling, 2010, 3, ra43.	3.6	100
88	ID4: a new player in the cancer arena. Oncotarget, 2010, 1, 48-58.	1.8	36
89	ID4: a new player in the cancer arena. Oncotarget, 2010, 1, 48-58.	1.8	25
90	Mammosphere-forming cells from breast cancer cell lines as a tool for the identification of CSC-likeand early progenitor-targeting drugs. Cell Cycle, 2010, 9, 2878-87.	2.6	51

#	Article	IF	CITATIONS
91	Metformin, diet and breast cancer: An avenue for chemoprevention. Cell Cycle, 2009, 8, 2661-2661.	2.6	33
92	Tetraploidy triggers mithocondria. Cell Cycle, 2009, 8, 1305-1307.	2.6	0
93	YAP: At the crossroad between transformation and tumor suppression. Cell Cycle, 2009, 8, 49-57.	2.6	99
94	The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis. Nature Structural and Molecular Biology, 2009, 16, 1086-1093.	8.2	182
95	The Hippo Tumor Suppressor Pathway: A Brainstorming WorkshopA report on the research meeting "The Hippo Tumor Suppressor Pathway: A Brainstorming Workshop―sponsored mainly by the Regina Elena Cancer Center and the Nicola Foundation and held in Rome, Italy, on 22 and 23 April 2009 Science Signaling, 2009, 2, mr6.	3.6	13
96	PML, YAP, and p73 Are Components of a Proapoptotic Autoregulatory Feedback Loop. Molecular Cell, 2008, 32, 803-814.	9.7	224
97	Urinary 6-Sulfatoxymelatonin Levels and Risk of Breast Cancer in Postmenopausal Women. Journal of the National Cancer Institute, 2008, 100, 898-905.	6.3	94
98	The disruption of the protein complex mutantp53/p73 increases selectively the response of tumor cells to anticancer drugs. Cell Cycle, 2008, 7, 3440-3447.	2.6	83
99	Oncogenomic Approaches in Exploring Gain of Function of Mutant p53. Current Genomics, 2008, 9, 200-207.	1.6	20
100	Conditional RNA interference in vivo to study mutant p53 oncogenic gain of function on tumor malignancy. Cell Cycle, 2008, 7, 1870-1879.	2.6	81
101	Mutant p53 Enhances Nuclear Factor κB Activation by Tumor Necrosis Factor α in Cancer Cells. Cancer Research, 2007, 67, 2396-2401.	0.9	178
102	P73, P63 and Mutant P53: Members of Protein Complexs Floating in Cancer Cells., 2007, , 223-232.		3
103	YAP1 Meets Tumor Suppression. Molecular Cell, 2007, 27, 863-864.	9.7	14
104	Mutant p53 proteins: Between loss and gain of function. Head and Neck, 2007, 29, 488-496.	2.0	45
105	Mutant p53: an oncogenic transcription factor. Oncogene, 2007, 26, 2212-2219.	5.9	241
106	p73, p63 and Mutant p53: Members of Protein Complexes Floating in Cancer Cells., 2007,, 223-232.		0
107	Gain of function of mutant p53: The mutant p53/NF-Y protein complex reveals an aberrant transcriptional mechanism of cell cycle regulation. Cancer Cell, 2006, 10, 191-202.	16.8	386
108	ÎEF1 repressor controls selectively p53 family members during differentiation. Oncogene, 2005, 24, 7273-7280.	5.9	42

#	Article	IF	CITATIONS
109	A Role of p73 in Mitotic Exit. Journal of Biological Chemistry, 2005, 280, 30354-30360.	3.4	35
110	The Transcriptional Coactivator Yes-Associated Protein Drives p73 Gene-Target Specificity in Response to DNA Damage. Molecular Cell, 2005, 18, 447-459.	9.7	318
111	The Transcriptional Coactivator Yes-Associated Protein Drives p73 Gene-Target Specificity in Response to DNA Damage. Molecular Cell, 2005, 19, 429.	9.7	3
112	p73-induced apoptosis: A question of compartments and cooperation. Biochemical and Biophysical Research Communications, 2005, 331, 688-693.	2.1	37
113	Pin1 Links the Activities of c-Abl and p300 in Regulating p73 Function. Molecular Cell, 2004, 14, 625-636.	9.7	165
114	v-Src inhibits myogenic differentiation by interfering with the regulatory network of muscle-specific transcriptional activators at multiple levels. Oncogene, 2003, 22, 8302-8315.	5.9	13
115	Change of Conformation of the DNA-binding Domain of p53 Is the Only Key Element for Binding of and Interference with p73. Journal of Biological Chemistry, 2003, 278, 10546-10555.	3.4	36
116	p73 Is Regulated by Phosphorylation at the $G2/M$ Transition. Journal of Biological Chemistry, 2003, 278, 49196-49202.	3.4	37
117	p73-Mediated Chemosensitivity: A Preferential Target of Oncogenic Mutant p53. Cell Cycle, 2003, 2, 345-346.	2.6	34
118	p73-mediated chemosensitivity: a preferential target of oncogenic mutant p53. Cell Cycle, 2003, 2, 348-9.	2.6	20
119	Physical Interaction with Human Tumor-derived p53 Mutants Inhibits p63 Activities. Journal of Biological Chemistry, 2002, 277, 18817-18826.	3.4	203
120	Identification of Direct p73 Target Genes Combining DNA Microarray and Chromatin Immunoprecipitation Analyses. Journal of Biological Chemistry, 2002, 277, 43359-43368.	3.4	125
121	From p63 to p53 across p73. FEBS Letters, 2001, 490, 163-170.	2.8	79
122	Physical Interaction with Yes-associated Protein Enhances p73 Transcriptional Activity. Journal of Biological Chemistry, 2001, 276, 15164-15173.	3.4	368
123	The Transcriptional Repressor ZEB Regulates p73 Expression at the Crossroad between Proliferation and Differentiation. Molecular and Cellular Biology, 2001, 21, 8461-8470.	2.3	117
124	Physical and Functional Interaction between p53 Mutants and Different Isoforms of p73. Journal of Biological Chemistry, 2000, 275, 29503-29512.	3.4	217
125	Long non-coding RNA MALAT1 as metastasis suppressor. Precision Cancer Medicine, 0, 2, 4-4.	1.8	O