Iain McCulloch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5430250/publications.pdf

Version: 2024-02-01

506 54,162 116 213
papers citations h-index g-index

519 519 519 24746
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Highâ€Efficiency Ionâ€Exchange Doping of Conducting Polymers. Advanced Materials, 2022, 34, e2102988.	21.0	67
2	Co-delivery of NIR-II semiconducting polymer and pH-sensitive doxorubicin-conjugated prodrug for photothermal/chemotherapy. Acta Biomaterialia, 2022, 137, 238-251.	8.3	18
3	Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2022, 34, e2105007.	21.0	33
4	Lactone Backbone Density in Rigid Electronâ€Deficient Semiconducting Polymers Enabling High nâ€type Organic Thermoelectric Performance. Angewandte Chemie, 2022, 134, .	2.0	8
5	Lactone Backbone Density in Rigid Electronâ€Deficient Semiconducting Polymers Enabling High nâ€type Organic Thermoelectric Performance. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
6	High urrentâ€Density Organic Electrochemical Diodes Enabled by Asymmetric Active Layer Design. Advanced Materials, 2022, 34, e2107355.	21.0	8
7	Propylene and butylene glycol: new alternatives to ethylene glycol in conjugated polymers for bioelectronic applications. Materials Horizons, 2022, 9, 973-980.	12.2	23
8	Green Synthesis of Lactoneâ€Based Conjugated Polymers for nâ€Type Organic Electrochemical Transistors. Advanced Functional Materials, 2022, 32, .	14.9	45
9	Semiconducting Polymers for Neural Applications. Chemical Reviews, 2022, 122, 4356-4396.	47.7	59
10	An Electroactive Filter with Tunable Porosity Based on Glycolated Polythiophene. Small Science, 2022, 2, .	9.9	3
11	Facilely Accessible Porous Conjugated Polymers toward High-Performance and Flexible Organic Electrochemical Transistors. Chemistry of Materials, 2022, 34, 1666-1676.	6.7	30
12	Structural and Dynamic Disorder, Not Ionic Trapping, Controls Charge Transport in Highly Doped Conducting Polymers. Journal of the American Chemical Society, 2022, 144, 3005-3019.	13.7	45
13	Introduction: Organic Bioelectronics. Chemical Reviews, 2022, 122, 4323-4324.	47.7	13
14	Allâ€Solidâ€State Vertical Threeâ€Terminal Nâ€Type Organic Synaptic Devices for Neuromorphic Computing. Advanced Functional Materials, 2022, 32, .	14.9	28
15	Infrared Organic Photodetectors Employing Ultralow Bandgap Polymer and Nonâ€Fullerene Acceptors for Biometric Monitoring. Small, 2022, 18, e2200580.	10.0	39
16	Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nature Energy, 2022, 7, 340-351.	39.5	164
17	Efficient n-Type Small-Molecule Mixed Ion-Electron Conductors and Application in Hydrogen Peroxide Sensors. ACS Applied Materials & Some Some Some Some Some Some Some Some	8.0	22
18	Synthetic Nuances to Maximize n-Type Organic Electrochemical Transistor and Thermoelectric Performance in Fused Lactam Polymers. Journal of the American Chemical Society, 2022, 144, 4642-4656.	13.7	63

#	Article	IF	CITATIONS
19	Sources and Mechanism of Degradation in p-Type Thiophene-Based Organic Electrochemical Transistors. ACS Applied Electronic Materials, 2022, 4, 1391-1404.	4.3	11
20	Stretchable Redoxâ€Active Semiconducting Polymers for Highâ€Performance Organic Electrochemical Transistors. Advanced Materials, 2022, 34, e2201178.	21.0	50
21	Donor Functionalization Tuning the Nâ€Type Performance of Donor–Acceptor Copolymers for Aqueousâ€Based Electrochemical Devices. Advanced Functional Materials, 2022, 32, .	14.9	25
22	Highly Efficient Mixed Conduction in Nâ€type Fused Small Molecule Semiconductors. Advanced Functional Materials, 2022, 32, .	14.9	27
23	Tuning Organic Electrochemical Transistor Threshold Voltage using Chemically Doped Polymer Gates. Advanced Materials, 2022, 34, .	21.0	14
24	Operation Mechanism of nâ€Type Organic Electronic Metabolite Sensors. Advanced Electronic Materials, 2022, 8, .	5.1	12
25	Efficient Electronic Tunneling Governs Transport in Conducting Polymer-Insulator Blends. Journal of the American Chemical Society, 2022, 144, 10368-10376.	13.7	26
26	Convection Driven Ultrarapid Protein Detection via Nanobodyâ€Functionalized Organic Electrochemical Transistors. Advanced Materials, 2022, 34, .	21.0	36
27	Single Atom Selenium Substitutionâ€Mediated Pâ€Type Doping in Polythiophenes toward Highâ€Performance Organic Electronics and Thermoelectrics. Advanced Electronic Materials, 2022, 8, .	5.1	4
28	Conjugated Polymers for Microwave Applications: Untethered Sensing Platforms and Multifunctional Devices. Advanced Materials, 2022, 34, .	21.0	11
29	Waterâ€Insensitive Electron Transport and Photoactive Layers for Improved Underwater Stability of Organic Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	8
30	Highly Deformed o â€Carborane Functionalised Nonâ€inear Polycyclic Aromatics with Exceptionally Long Câ°'C Bonds. Chemistry - A European Journal, 2021, 27, 1970-1975.	3.3	8
31	Scaling-up perovskite solar cells on hydrophobic surfaces. Nano Energy, 2021, 81, 105633.	16.0	46
32	Linking Glassâ€Transition Behavior to Photophysical and Charge Transport Properties of Highâ€Mobility Conjugated Polymers. Advanced Functional Materials, 2021, 31, 2007359.	14.9	26
33	Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie - International Edition, 2021, 60, 7777-7785.	13.8	84
34	Polaron Delocalization in Donor–Acceptor Polymers and its Impact on Organic Electrochemical Transistor Performance. Angewandte Chemie, 2021, 133, 7856-7864.	2.0	16
35	Acene Ring Size Optimization in Fused Lactam Polymers Enabling High n-Type Organic Thermoelectric Performance. Journal of the American Chemical Society, 2021, 143, 260-268.	13.7	68
36	Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials, 2021, 20, 378-384.	27.5	257

3

#	Article	IF	Citations
37	N-Doping improves charge transport and morphology in the organic non-fullerene acceptor O-IDTBR. Journal of Materials Chemistry C, 2021, 9, 4486-4495.	5.5	17
38	Non-fullerene-based organic photodetectors for infrared communication. Journal of Materials Chemistry C, 2021, 9, 2375-2380.	5.5	37
39	Coupling molecular rigidity and flexibility on fused backbones for NIR-II photothermal conversion. Chemical Science, 2021, 12, 5177-5184.	7.4	32
40	Operation mechanism of organic electrochemical transistors as redox chemical transducers. Journal of Materials Chemistry C, 2021, 9, 12148-12158.	5.5	17
41	A molecular interaction–diffusion framework for predicting organic solar cell stability. Nature Materials, 2021, 20, 525-532.	27.5	212
42	Influence of Side Chains on the n-Type Organic Electrochemical Transistor Performance. ACS Applied Materials & Description (2011), 13, 4253-4266.	8.0	76
43	Microfluidics integrated n-type organic electrochemical transistor for metabolite sensing. Sensors and Actuators B: Chemical, 2021, 329, 129251.	7.8	35
44	n â€Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for Highâ€Performance Organic Electrochemical Transistors. Angewandte Chemie, 2021, 133, 9454-9459.	2.0	17
45	<i>n</i> â€Type Rigid Semiconducting Polymers Bearing Oligo(Ethylene Glycol) Side Chains for Highâ€Performance Organic Electrochemical Transistors. Angewandte Chemie - International Edition, 2021, 60, 9368-9373.	13.8	84
46	Highâ€Gain Chemically Gated Organic Electrochemical Transistor. Advanced Functional Materials, 2021, 31, 2010868.	14.9	46
47	Microfluidic Integrated Organic Electrochemical Transistor with a Nanoporous Membrane for Amyloid- \hat{l}^2 Detection. ACS Nano, 2021, 15, 8130-8141.	14.6	59
48	Challenges to the Success of Commercial Organic Photovoltaic Products. Advanced Energy Materials, 2021, 11, 2100056.	19.5	65
49	Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nature Communications, 2021, 12, 1772.	12.8	27
50	Mixed Conduction in an Nâ€Type Organic Semiconductor in the Absence of Hydrophilic Sideâ€Chains. Advanced Functional Materials, 2021, 31, 2010165.	14.9	71
51	Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells. Journal of the American Chemical Society, 2021, 143, 7599-7603.	13.7	59
52	Charge transport physics of a unique class of rigid-rod conjugated polymers with fused-ring conjugated units linked by double carbon-carbon bonds. Science Advances, 2021, 7, .	10.3	28
53	Controlling Electrochemically Induced Volume Changes in Conjugated Polymers by Chemical Design: from Theory to Devices. Advanced Functional Materials, 2021, 31, 2100723.	14.9	35
54	Influence of alkyne spacers on the performance of thiophene-based donors in bulk-heterojunction organic photovoltaic cells. Dyes and Pigments, 2021, 188, 109152.	3.7	9

#	Article	IF	Citations
55	Suppressing bias stress degradation in high performance solution processed organic transistors operating in air. Nature Communications, 2021, 12, 2352.	12.8	48
56	Inkjet Printed Circuits with 2D Semiconductor Inks for Highâ€Performance Electronics. Advanced Electronic Materials, 2021, 7, 2100112.	5.1	46
57	Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nature Biomedical Engineering, 2021, 5, 666-677.	22.5	235
58	Impact of Acceptor Quadrupole Moment on Charge Generation and Recombination in Blends of IDTâ€Based Nonâ€Fullerene Acceptors with PCE10 as Donor Polymer. Advanced Energy Materials, 2021, 11, 2100839.	19.5	23
59	Regiochemistry-Driven Organic Electrochemical Transistor Performance Enhancement in Ethylene Glycol-Functionalized Polythiophenes. Journal of the American Chemical Society, 2021, 143, 11007-11018.	13.7	74
60	Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule, 2021, 5, 1566-1586.	24.0	119
61	Elucidating the Role of Waterâ€Related Traps in the Operation of Polymer Fieldâ€Effect Transistors. Advanced Electronic Materials, 2021, 7, 2100393.	5.1	13
62	Ternary organic photodetectors based on pseudo-binaries nonfullerene-based acceptors. JPhys Materials, 2021, 4, 045001.	4.2	9
63	Non-fullerene acceptor photostability and its impact on organic solar cell lifetime. Cell Reports Physical Science, 2021, 2, 100498.	5.6	35
64	Ion Pair Uptake in Ion Gel Devices Based on Organic Mixed Ionic–Electronic Conductors. Advanced Functional Materials, 2021, 31, 2104301.	14.9	35
65	Ambipolar inverters based on cofacial vertical organic electrochemical transistor pairs for biosignal amplification. Science Advances, 2021, 7, eabh1055.	10.3	46
66	Design of experiment optimization of aligned polymer thermoelectrics doped by ion-exchange. Applied Physics Letters, 2021, 119, .	3.3	10
67	A molecular design approach towards elastic and multifunctional polymer electronics. Nature Communications, 2021, 12, 5701.	12.8	7 5
68	Low-Defect, High Molecular Weight Indacenodithiophene (IDT) Polymers Via a C–H Activation: Evaluation of a Simpler and Greener Approach to Organic Electronic Materials. , 2021, 3, 1503-1512.		19
69	The Effect of Alkyl Spacers on the Mixed Ionicâ€Electronic Conduction Properties of Nâ€√ype Polymers. Advanced Functional Materials, 2021, 31, 2008718.	14.9	67
70	n-Type organic semiconducting polymers: stability limitations, design considerations and applications. Journal of Materials Chemistry C, 2021, 9, 8099-8128.	5.5	123
71	Electrolyte-gated transistors for enhanced performance bioelectronics. Nature Reviews Methods Primers, $2021,1,.$	21.2	172
72	Chemical Design Rules for Nonâ€Fullerene Acceptors in Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102363.	19.5	38

#	Article	IF	CITATIONS
73	Unraveling the Unconventional Order of a High-Mobility Indacenodithiophene–Benzothiadiazole Copolymer. ACS Macro Letters, 2021, 10, 1306-1314.	4.8	20
74	Printed Memtransistor Utilizing a Hybrid Perovskite/Organic Heterojunction Channel. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51592-51601.	8.0	9
75	Aldol Polymerization to Construct Half-Fused Semiconducting Polymers. Macromolecules, 2021, 54, 10312-10320.	4.8	15
76	Chemical Design Rules for Nonâ€Fullerene Acceptors in Organic Solar Cells (Adv. Energy Mater.) Tj ETQq0 0 0 rg	gBT /Oyerlo	ock 10 Tf 50 (
77	Organic neuromorphic electronics for sensorimotor integration and learning in robotics. Science Advances, 2021, 7, eabl5068.	10.3	54
78	Reversible Electronic Solid–Gel Switching of a Conjugated Polymer. Advanced Science, 2020, 7, 1901144.	11.2	45
79	A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices. Energy and Environmental Science, 2020, 13, 268-276.	30.8	40
80	Afterglow Effects as a Tool to Screen Emissive Nongeminate Charge Recombination Processes in Organic Photovoltaic Composites. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2695-2707.	8.0	5
81	The role of chemical design in the performance of organic semiconductors. Nature Reviews Chemistry, 2020, 4, 66-77.	30.2	444
82	Biofuel powered glucose detection in bodily fluids with an n-type conjugated polymer. Nature Materials, 2020, 19, 456-463.	27.5	187
83	Modification of Indacenodithiophene-Based Polymers and Its Impact on Charge Carrier Mobility in Organic Thin-Film Transistors. Journal of the American Chemical Society, 2020, 142, 652-664.	13.7	101
84	Low-Temperature Cross-Linking Benzocyclobutene Based Polymer Dielectric for Organic Thin Film Transistors on Plastic Substrates. Journal of Organic Chemistry, 2020, 85, 277-283.	3.2	17
85	Phototuning Selectively Hole and Electron Transport in Optically Switchable Ambipolar Transistors. Advanced Functional Materials, 2020, 30, 1908944.	14.9	27
86	Energetic Disorder and Activation Energy in Efficient Ternary Organic Solar Cells with Nonfullerene Acceptor Ehâ€IDTBR as the Third Component. Solar Rrl, 2020, 4, 1900403.	5.8	47
87	Slow charge transfer from pentacene triplet states at the Marcus optimum. Nature Chemistry, 2020, 12, 63-70.	13.6	36
88	Nonfullerene-Based Organic Photodetectors for Ultrahigh Sensitivity Visible Light Detection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48836-48844.	8.0	40
89	Organic Solar Cells: Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells (Adv. Energy Mater. 38/2020). Advanced Energy Materials, 2020, 10, 2070158.	19.5	2
90	Long-range exciton diffusion in molecular non-fullerene acceptors. Nature Communications, 2020, 11, 5220.	12.8	204

#	Article	IF	Citations
91	Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001149.	19.5	40
92	Effects of Fluorination on Fused Ring Electron Acceptor for Active Layer Morphology, Exciton Dissociation, and Charge Recombination in Organic Solar Cells. ACS Applied Materials & Samp; Interfaces, 2020, 12, 56231-56239.	8.0	15
93	Resolving Different Physical Origins toward Crystallite Imperfection in Semiconducting Polymers: Crystallite Size vs Paracrystallinity. Journal of Physical Chemistry B, 2020, 124, 10529-10538.	2.6	12
94	The Chemistry and Applications of Heteroisoindigo Units as Enabling Links for Semiconducting Materials. Accounts of Chemical Research, 2020, 53, 2855-2868.	15.6	46
95	Side Chain Redistribution as a Strategy to Boost Organic Electrochemical Transistor Performance and Stability. Advanced Materials, 2020, 32, e2002748.	21.0	181
96	The effect of aromatic ring size in electron deficient semiconducting polymers for n-type organic thermoelectrics. Journal of Materials Chemistry C, 2020, 8, 15150-15157.	5.5	28
97	Ethylene Glycol-Based Side Chain Length Engineering in Polythiophenes and its Impact on Organic Electrochemical Transistor Performance. Chemistry of Materials, 2020, 32, 6618-6628.	6.7	92
98	Hidden Perils of Lead in the Lab: Guidelines for Containing, Monitoring, and Decontaminating Lead in the Context of Perovskite Research. Chemistry of Materials, 2020, 32, 7141-7149.	6.7	3
99	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 14574-14587.	13.7	118
100	The Bulk Heterojunction in Organic Photovoltaic, Photodetector, and Photocatalytic Applications. Advanced Materials, 2020, 32, e2001763.	21.0	168
101	Thermally Induced Formation of HF ₄ TCNQ ^{â€"} in F ₄ TCNQ-Doped Regioregular P3HT. Journal of Physical Chemistry Letters, 2020, 11, 6586-6592.	4.6	13
102	Low-Voltage, Dual-Gate Organic Transistors with High Sensitivity and Stability toward Electrostatic Biosensing. ACS Applied Materials & Samp; Interfaces, 2020, 12, 40581-40589.	8.0	26
103	lon Coordination and Chelation in a Glycolated Polymer Semiconductor: Molecular Dynamics and X-ray Fluorescence Study. Chemistry of Materials, 2020, 32, 7301-7308.	6.7	21
104	High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating. ACS Energy Letters, 2020, 5, 3034-3040.	17.4	134
105	Photocatalysts Based on Organic Semiconductors with Tunable Energy Levels for Solar Fuel Applications. Advanced Energy Materials, 2020, 10, 2001935.	19.5	92
106	A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2004273.	14.9	17
107	Correlating the Phase Behavior with the Device Performance in Binary Poly-3-hexylthiophene: Nonfullerene Acceptor Blend Using Optical Probes of the Microstructure. Chemistry of Materials, 2020, 32, 8294-8305.	6.7	21
108	The role of exciton lifetime for charge generation in organic solar cells at negligible energy-level offsets. Nature Energy, 2020, 5, 711-719.	39.5	214

7

#	Article	IF	CITATIONS
109	High-density polyethylene—an inert additive with stabilizing effects on organic field-effect transistors. Journal of Materials Chemistry C, 2020, 8, 15406-15415.	5.5	15
110	Self-Assembled Monolayer Enables Hole Transport Layer-Free Organic Solar Cells with 18% Efficiency and Improved Operational Stability. ACS Energy Letters, 2020, 5, 2935-2944.	17.4	425
111	Anisotropy of Charge Transport in a Uniaxially Aligned Fused Electronâ€Deficient Polymer Processed by Solution Shear Coating. Advanced Materials, 2020, 32, e2000063.	21.0	38
112	Metal-free polymerization: synthesis and properties of fused benzo[1,2- <i>b</i> i>i+,5- <i>b</i> i≥′]bis[<i>b</i>]benzothiophene (BBBT) polymers. Polymer Chemistry, 2020, 11, 3695-3700.	3.9	6
113	Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy and Environmental Science, 2020, 13, 1843-1855.	30.8	92
114	Engineering Optically Switchable Transistors with Improved Performance by Controlling Interactions of Diarylethenes in Polymer Matrices. Journal of the American Chemical Society, 2020, 142, 11050-11059.	13.7	37
115	Water stable molecular n-doping produces organic electrochemical transistors with high transconductance and record stability. Nature Communications, 2020, 11, 3004.	12.8	82
116	Largeâ€Area Uniform Polymer Transistor Arrays on Flexible Substrates: Towards Highâ€Throughput Sensor Fabrication. Advanced Materials Technologies, 2020, 5, 2000390.	5.8	19
117	Correlating the Structural and Photophysical Properties of <i>Ortho</i> , <i>Meta</i> , and <i>Para</i> êCarboranyl–Anthracene Dyads. Advanced Electronic Materials, 2020, 6, 2000312.	5.1	13
118	Monitoring supported lipid bilayers with n-type organic electrochemical transistors. Materials Horizons, 2020, 7, 2348-2358.	12.2	42
119	Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells. ACS Energy Letters, 2020, 5, 1371-1379.	17.4	126
120	Pulse Oximetry Using Organic Optoelectronics under Ambient Light. Advanced Materials Technologies, 2020, 5, 1901122.	5.8	50
121	Temperature-resilient solid-state organic artificial synapses for neuromorphic computing. Science Advances, 2020, 6, .	10.3	131
122	Organic thin-film transistors with flame-annealed contacts. Flexible and Printed Electronics, 2020, 5, 014015.	2.7	5
123	Energetic Control of Redoxâ€Active Polymers toward Safe Organic Bioelectronic Materials. Advanced Materials, 2020, 32, e1908047.	21.0	124
124	17.1% Efficient Singleâ€Junction Organic Solar Cells Enabled by nâ€Type Doping of the Bulkâ€Heterojunction. Advanced Science, 2020, 7, 1903419.	11.2	173
125	Conjugated Polymers: Reversible Electronic Solid–Gel Switching of a Conjugated Polymer (Adv. Sci.) Tj ETQq1 I	l 0.78431 11.2	4 rgBT /Over
126	Balancing Ionic and Electronic Conduction for Highâ€Performance Organic Electrochemical Transistors. Advanced Functional Materials, 2020, 30, 1907657.	14.9	131

#	Article	IF	Citations
127	Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4Ta€2DT/Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, 1903248.	19.5	23
128	Universal Spray-Deposition Process for Scalable, High-Performance, and Stable Organic Electrochemical Transistors. ACS Applied Materials & Electrochemical Transistors. ACS Applied Materials & Electrochemical Transistors.	8.0	48
129	Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nature Materials, 2020, 19, 559-565.	27.5	366
130	Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4T-2DT/Non-Fullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, .	19.5	0
131	Fused Pyrazine―and Carbazoleâ€Containing Azaacenes: Synthesis and Properties. ChemPlusChem, 2019, 84, 1257-1262.	2.8	5
132	Impact of Nonfullerene Acceptor Side Chain Variation on Transistor Mobility. Advanced Electronic Materials, 2019, 5, 1900344.	5.1	45
133	On the Role of Contact Resistance and Electrode Modification in Organic Electrochemical Transistors. Advanced Materials, 2019, 31, e1902291.	21.0	52
134	Heavy-Metal-Free Flexible Hybrid Polymer-Nanocrystal Photodetectors Sensitive to 1.5 $\hat{1}$ /4m Wavelength. ACS Applied Materials & ACS ACS Applied Materials & ACS	8.0	12
135	The Effect of Ring Expansion in Thienobenzo[<i>b</i>]indacenodithiophene Polymers for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2019, 141, 18806-18813.	13.7	45
136	17% Efficient Organic Solar Cells Based on Liquid Exfoliated WS ₂ as a Replacement for PEDOT:PSS. Advanced Materials, 2019, 31, e1902965.	21.0	500
137	Hybrid Alkyl–Ethylene Glycol Side Chains Enhance Substrate Adhesion and Operational Stability in Accumulation Mode Organic Electrochemical Transistors. Chemistry of Materials, 2019, 31, 9797-9806.	6.7	97
138	Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO ₃) Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 8090-8097.	5.1	51
139	Carrier Extraction from Perovskite to Polymeric Charge Transport Layers Probed by Ultrafast Transient Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 6921-6928.	4.6	19
140	An Intrinsically Stretchable Highâ€Performance Polymer Semiconductor with Low Crystallinity. Advanced Functional Materials, 2019, 29, 1905340.	14.9	120
141	Use of the Phenâ€NaDPO:Sn(SCN) ₂ Blend as Electron Transport Layer Results to Consistent Efficiency Improvements in Organic and Hybrid Perovskite Solar Cells. Advanced Functional Materials, 2019, 29, 1905810.	14.9	41
142	Membraneâ€Free Detection of Metal Cations with an Organic Electrochemical Transistor. Advanced Functional Materials, 2019, 29, 1904403.	14.9	80
143	Nanoscale Ion-Doped Polymer Transistors. Nano Letters, 2019, 19, 1712-1718.	9.1	25
144	Solvent Engineering for Highâ€Performance nâ€Type Organic Electrochemical Transistors. Advanced Electronic Materials, 2019, 5, 1900249.	5.1	59

#	Article	IF	Citations
145	End Group Tuning in Acceptor–Donor–Acceptor Nonfullerene Small Molecules for High Fill Factor Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1808429.	14.9	41
146	Polaron spin dynamics in high-mobility polymeric semiconductors. Nature Physics, 2019, 15, 814-822.	16.7	40
147	Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity. Advanced Energy Materials, 2019, 9, 1901254.	19.5	54
148	Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nature Communications, 2019, 10, 2614.	12.8	60
149	High-mobility, trap-free charge transport in conjugated polymer diodes. Nature Communications, 2019, 10, 2122.	12.8	92
150	Charge carrier transport and nanomorphology control for efficient non-fullerene organic solar cells. Materials Today Energy, 2019, 12, 398-407.	4.7	23
151	Delineation of Thermodynamic and Kinetic Factors that Control Stability in Non-fullerene Organic Solar Cells. Joule, 2019, 3, 1328-1348.	24.0	143
152	P3HT Molecular Weight Determines the Performance of P3HT:Oâ€IDTBR Solar Cells. Solar Rrl, 2019, 3, 1900023.	5.8	27
153	Highly selective chromoionophores for ratiometric Na+ sensing based on an oligoethyleneglycol bridged bithiophene detection unit. Journal of Materials Chemistry C, 2019, 7, 5359-5365.	5.5	13
154	New synthetic methodology paves the way to prepare electron deficient semiconducting mesopolymers with very high performance. Science China Chemistry, 2019, 62, 885-886.	8.2	0
155	Long spin diffusion lengths in doped conjugated polymers due to enhanced exchange coupling. Nature Electronics, 2019, 2, 98-107.	26.0	62
156	The role of the third component in ternary organic solar cells. Nature Reviews Materials, 2019, 4, 229-242.	48.7	370
157	Investigation of the thermoelectric response in conducting polymers doped by solid-state diffusion. Materials Today Physics, 2019, 8, 112-122.	6.0	40
158	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. ACS Energy Letters, 2019, 4, 846-852.	17.4	71
159	The binding energy and dynamics of charge-transfer states in organic photovoltaics with low driving force for charge separation. Journal of Chemical Physics, 2019, 150, 104704.	3.0	32
160	Design and evaluation of conjugated polymers with polar side chains as electrode materials for electrochemical energy storage in aqueous electrolytes. Energy and Environmental Science, 2019, 12, 1349-1357.	30.8	136
161	Negligible Energy Loss During Charge Generation in Small-Molecule/Fullerene Bulk-Heterojunction Solar Cells Leads to Open-Circuit Voltage over 1.10 V. ACS Applied Energy Materials, 2019, 2, 2717-2722.	5.1	27
162	Twist and Degradeâ€"Impact of Molecular Structure on the Photostability of Nonfullerene Acceptors and Their Photovoltaic Blends. Advanced Energy Materials, 2019, 9, 1803755.	19.5	95

#	Article	IF	Citations
163	Spectroscopic Investigation of the Effect of Microstructure and Energetic Offset on the Nature of Interfacial Charge Transfer States in Polymer: Fullerene Blends. Journal of the American Chemical Society, 2019, 141, 4634-4643.	13.7	34
164	Excitation Wavelength-Dependent Internal Quantum Efficiencies in a P3HT/Nonfullerene Acceptor Solar Cell. Journal of Physical Chemistry C, 2019, 123, 5826-5832.	3.1	6
165	Role of the Anion on the Transport and Structure of Organic Mixed Conductors. Advanced Functional Materials, 2019, 29, 1807034.	14.9	116
166	Influence of Water on the Performance of Organic Electrochemical Transistors. Chemistry of Materials, 2019, 31, 927-937.	6.7	140
167	Double doping of conjugated polymers with monomer molecular dopants. Nature Materials, 2019, 18, 149-155.	27.5	225
168	Materials in Organic Electrochemical Transistors for Bioelectronic Applications: Past, Present, and Future. Advanced Functional Materials, 2019, 29, 1807033.	14.9	128
169	Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chemical Society Reviews, 2019, 48, 1596-1625.	38.1	814
170	Redoxâ€Stability of Alkoxyâ€BDT Copolymers and their Use for Organic Bioelectronic Devices. Advanced Functional Materials, 2018, 28, 1706325.	14.9	77
171	Alternative Thieno[3,2â€b][1]benzothiophene Isoindigo Polymers for Solar Cell Applications. Macromolecular Rapid Communications, 2018, 39, e1700820.	3.9	9
172	The Role of the Side Chain on the Performance of N-type Conjugated Polymers in Aqueous Electrolytes. Chemistry of Materials, 2018, 30, 2945-2953.	6.7	199
173	Carrier Transport and Recombination in Efficient "Allâ€Smallâ€Molecule―Solar Cells with the Nonfullerene Acceptor IDTBR. Advanced Energy Materials, 2018, 8, 1800264.	19.5	63
174	The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2018, 8, 1703298.	19.5	120
175	Fused electron deficient semiconducting polymers for air stable electron transport. Nature Communications, 2018, 9, 416.	12.8	133
176	A Thieno[2,3- <i>b</i>)pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors. Macromolecules, 2018, 51, 71-79.	4.8	58
177	Barbiturate end-capped non-fullerene acceptors for organic solar cells: tuning acceptor energetics to suppress geminate recombination losses. Chemical Communications, 2018, 54, 2966-2969.	4.1	29
178	Enhanced n-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics. ACS Energy Letters, 2018, 3, 278-285.	17.4	220
179	Lipid bilayer formation on organic electronic materials. Journal of Materials Chemistry C, 2018, 6, 5218-5227.	5.5	12
180	Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy and Environmental Science, 2018, 11, 1355-1361.	30.8	157

#	Article	IF	CITATIONS
181	Correlation of Disorder and Charge Transport in a Range of Indacenodithiopheneâ€Based Semiconducting Polymers. Advanced Electronic Materials, 2018, 4, 1700410.	5.1	26
182	Why are S–F and S–O non-covalent interactions stabilising?. Journal of Materials Chemistry C, 2018, 6, 12413-12421.	5.5	52
183	High performance ambient-air-stable FAPbl ₃ perovskite solar cells with molecule-passivated Ruddlesden–Popper/3D heterostructured film. Energy and Environmental Science, 2018, 11, 3358-3366.	30.8	196
184	Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nature Communications, 2018, 9, 5335.	12.8	91
185	A simple and robust approach to reducing contact resistance in organic transistors. Nature Communications, 2018, 9, 5130.	12.8	96
186	A new cross-linkable 9,10-diphenylanthracene derivative as a wide bandgap host for solution-processed organic light-emitting diodes. Journal of Materials Chemistry C, 2018, 6, 12948-12954.	5. 5	20
187	An Analysis of the Factors Determining the Efficiency of Photocurrent Generation in Polymer:Nonfullerene Acceptor Solar Cells. Advanced Energy Materials, 2018, 8, 1801537.	19.5	22
188	Residual Pd Enables Photocatalytic H ₂ Evolution from Conjugated Polymers. ACS Energy Letters, 2018, 3, 2846-2850.	17.4	52
189	Crystal Engineering of Dibenzothiophenothieno[3,2- <i>b</i>) Ithiophene (DBTTT) Isomers for Organic Field-Effect Transistors. Chemistry of Materials, 2018, 30, 7587-7592.	6.7	24
190	The Effect of Residual Palladium Catalyst Contamination on the Photocatalytic Hydrogen Evolution Activity of Conjugated Polymers. Advanced Energy Materials, 2018, 8, 1802181.	19.5	138
191	Visualizing the Solid–Liquid Interface of Conjugated Copolymer Films Using Fluorescent Liposomes. ACS Applied Bio Materials, 2018, 1, 1348-1354.	4.6	12
192	Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Advanced Functional Materials, 2018, 28, 1704389.	14.9	84
193	Synthesis and properties of isoindigo and benzo[1,2- <i>b</i> i>:4,5- <i>b</i> ′]bis[<i>b</i>]benzothiophene oligomers. Chemical Communications, 2018, 54, 11152-11155.	4.1	9
194	Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. Nature Communications, 2018, 9, 2059.	12.8	164
195	Subthreshold Operation of Organic Electrochemical Transistors for Biosignal Amplification. Advanced Science, 2018, 5, 1800453.	11.2	81
196	Progress in Poly (3â€Hexylthiophene) Organic Solar Cells and the Influence of Its Molecular Weight on Device Performance. Advanced Energy Materials, 2018, 8, 1801001.	19.5	95
197	Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Science Advances, 2018, 4, eaat0911.	10.3	183
198	Recent Progress in Highâ€Mobility Organic Transistors: A Reality Check. Advanced Materials, 2018, 30, e1801079.	21.0	498

#	Article	IF	Citations
199	Performance Improvements in Conjugated Polymer Devices by Removal of Waterâ€Induced Traps. Advanced Materials, 2018, 30, e1801874.	21.0	69
200	A Highly Crystalline Fusedâ€Ring nâ€Type Small Molecule for Nonâ€Fullerene Acceptor Based Organic Solar Cells and Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1802895.	14.9	74
201	Improving the Compatibility of Diketopyrrolopyrrole Semiconducting Polymers for Biological Interfacing by Lysine Attachment. Chemistry of Materials, 2018, 30, 6164-6172.	6.7	37
202	P3HT: non-fullerene acceptor based large area, semi-transparent PV modules with power conversion efficiencies of 5%, processed by industrially scalable methods. Energy and Environmental Science, 2018, 11, 2225-2234.	30.8	157
203	Conjugated Polymers in Bioelectronics. Accounts of Chemical Research, 2018, 51, 1368-1376.	15.6	361
204	Visible and Nearâ€Infrared Imaging with Nonfullereneâ€Based Photodetectors. Advanced Materials Technologies, 2018, 3, 1800104.	5.8	90
205	Highly efficient perovskite solar cells with crosslinked PCBM interlayers. Journal of Materials Chemistry A, 2017, 5, 2466-2472.	10.3	49
206	Simultaneous topographical, electrical and optical microscopy of optoelectronic devices at the nanoscale. Nanoscale, 2017, 9, 2723-2731.	5.6	25
207	Amorphous Tin Oxide as a Low-Temperature-Processed Electron-Transport Layer for Organic and Hybrid Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 11828-11836.	8.0	145
208	Trap Healing for Highâ€Performance Lowâ€Voltage Polymer Transistors and Solutionâ€Based Analog Amplifiers on Foil. Advanced Materials, 2017, 29, 1606938.	21.0	36
209	High mobility, hole transport materials for highly efficient PEDOT:PSS replacement in inverted perovskite solar cells. Journal of Materials Chemistry C, 2017, 5, 4940-4945.	5.5	56
210	Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells. Monatshefte Für Chemie, 2017, 148, 855-862.	1.8	10
211	Charge Separation in Intermixed Polymer:PC ₇₀ BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition. Journal of Physical Chemistry C, 2017, 121, 9790-9801.	3.1	20
212	Tuning the effective spin-orbit coupling in molecular semiconductors. Nature Communications, 2017, 8, 15200.	12.8	70
213	Diazaisoindigo bithiophene and terthiophene copolymers for application in fieldâ€effect transistors and solar cells. Journal of Polymer Science Part A, 2017, 55, 2691-2699.	2.3	14
214	Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap. Journal of the American Chemical Society, 2017, 139, 11073-11080.	13.7	95
215	Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents. ACS Energy Letters, 2017, 2, 1494-1500.	17.4	89
216	Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14136-14144.	8.0	43

#	Article	IF	CITATIONS
217	Microwave-synthesized tin oxide nanocrystals for low-temperature solution-processed planar junction organo-halide perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 7759-7763.	10.3	45
218	Photophysical Study of DPPTTâ€T/PC ₇₀ BM Blends and Solar Devices as a Function of Fullerene Loading: An Insight into EQE Limitations of DPPâ€Based Polymers. Advanced Functional Materials, 2017, 27, 1604426.	14.9	13
219	High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nature Materials, 2017, 16, 356-362.	27.5	345
220	Liquid–Solid Dual-Gate Organic Transistors with Tunable Threshold Voltage for Cell Sensing. ACS Applied Materials & Diterfaces, 2017, 9, 38687-38694.	8.0	46
221	Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates. Advanced Energy Materials, 2017, 7, 1701561.	19.5	76
222	Influence of disorder on transfer characteristics of organic electrochemical transistors. Applied Physics Letters, 2017, 111, .	3.3	59
223	Dithiopheneindenofluorene (TIF) Semiconducting Polymers with Very High Mobility in Fieldâ€Effect Transistors. Advanced Materials, 2017, 29, 1702523.	21.0	81
224	Burnâ€in Free Nonfullereneâ€Based Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1700770.	19.5	191
225	Intercalated vs Nonintercalated Morphologies in Donor–Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited. Journal of Physical Chemistry Letters, 2017, 8, 4061-4068.	4.6	15
226	Controlling Long-Lived Triplet Generation from Intramolecular Singlet Fission in the Solid State. Journal of Physical Chemistry Letters, 2017, 8, 6086-6091.	4.6	31
227	An Efficient, "Burn in―Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. Advanced Materials, 2017, 29, 1701156.	21.0	175
228	Quantifying local thickness and composition in thin films of organic photovoltaic blends by Raman scattering. Journal of Materials Chemistry C, 2017, 5, 7270-7282.	5.5	22
229	Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature Materials, 2017, 16, 363-369.	27.5	921
230	Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. Polymers, 2016, 8, 14.	4.5	111
231	Realâ€Time Investigation of Intercalation and Structure Evolution in Printed Polymer:Fullerene Bulk Heterojunction Thin Films. Advanced Energy Materials, 2016, 6, 1502025.	19.5	20
232	Improved Efficiency in Inverted Perovskite Solar Cells Employing a Novel Diarylaminoâ€Substituted Molecule as PEDOT:PSS Replacement. Advanced Energy Materials, 2016, 6, 1502101.	19.5	78
233	Effect of molecular weight on the vibronic structure of a diketopyrrolopyrrole polymer. Proceedings of SPIE, $2016, \ldots$	0.8	0
234	A Novel Alkylated Indacenodithieno[3,2â€b]thiopheneâ€Based Polymer for Highâ€Performance Fieldâ€Effect Transistors. Advanced Materials, 2016, 28, 3922-3927.	21.0	117

#	Article	IF	Citations
235	One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 2515-2518.	6.7	51
236	Exploring the origin of high optical absorption in conjugated polymers. Nature Materials, 2016, 15, 746-753.	27. 5	314
237	Sodium and Potassium Ion Selective Conjugated Polymers for Optical Ion Detection in Solution and Solid State. Advanced Functional Materials, 2016, 26, 514-523.	14.9	56
238	Capacitance Spectroscopy of Light Induced Trap States in Organic Solar Cells. Journal of Physical Chemistry C, 2016, 120, 22169-22178.	3.1	42
239	Azaisoindigo conjugated polymers for high performance n-type and ambipolar thin film transistor applications. Journal of Materials Chemistry C, 2016, 4, 9704-9710.	5.5	65
240	Controlling the mode of operation of organic transistors through side-chain engineering. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12017-12022.	7.1	364
241	Naphthacenodithiophene Based Polymers—New Members of the Acenodithiophene Family Exhibiting High Mobility and Power Conversion Efficiency. Advanced Functional Materials, 2016, 26, 6961-6969.	14.9	19
242	Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors. Journal of the American Chemical Society, 2016, 138, 10252-10259.	13.7	270
243	N-type organic electrochemical transistors with stability in water. Nature Communications, 2016, 7, 13066.	12.8	242
244	Ambipolar Organic Phototransistors with pâ€Type/nâ€Type Conjugated Polymer Bulk Heterojunction Lightâ€Sensing Layers. Advanced Electronic Materials, 2016, 2, 1600264.	5.1	46
245	Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy and Environmental Science, 2016, 9, 3783-3793.	30.8	477
246	Charge generation in polymer:fullerene photovoltaic systems (Conference Presentation)., 2016,,.		0
247	Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. Chemistry of Materials, 2016, 28, 8366-8378.	6.7	52
248	High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nature Communications, 2016, 7, 11585.	12.8	1,053
249	Avoid the kinks when measuring mobility. Science, 2016, 352, 1521-1522.	12.6	213
250	Decoupling Charge Transport and Electroluminescence in a High Mobility Polymer Semiconductor. Advanced Materials, 2016, 28, 6378-6385.	21.0	22
251	Photo- and electroluminescence of ambipolar, high-mobility, donor-acceptor polymers. Organic Electronics, 2016, 32, 220-227.	2.6	32
252	Organic/inorganic epitaxy: commensurate epitaxial growth of truxenone on Cu (111). RSC Advances, 2016, 6, 17125-17128.	3.6	4

#	Article	IF	Citations
253	Highly red-shifted NIR emission from a novel anthracene conjugated polymer backbone containing Pt(<scp>ii</scp>) porphyrins. Polymer Chemistry, 2016, 7, 722-730.	3.9	18
254	A Thieno[3,2â€ <i>b</i>][1]benzothiophene Isoindigo Building Block for Additive―and Annealingâ€Free Highâ€Performance Polymer Solar Cells. Advanced Materials, 2015, 27, 4702-4707.	21.0	120
255	Effects of alkyl chain positioning on conjugated polymer microstructure and field-effect mobilities. MRS Communications, 2015, 5, 435-440.	1.8	2
256	Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy. Journal of Chemical Physics, 2015, 142, 244904.	3.0	14
257	Classification of semiconducting polymeric mesophases to optimize device postprocessing. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1641-1653.	2.1	23
258	Conjugated Polymer–Porphyrin Complexes for Organic Electronics. ChemPhysChem, 2015, 16, 1223-1230.	2.1	10
259	Chalcogenophene Comonomer Comparison in Small Band Gap Diketopyrrolopyrrole-Based Conjugated Polymers for High-Performing Field-Effect Transistors and Organic Solar Cells. Journal of the American Chemical Society, 2015, 137, 1314-1321.	13.7	363
260	A Rhodanine Flanked Nonfullerene Acceptor for Solution-Processed Organic Photovoltaics. Journal of the American Chemical Society, 2015, 137, 898-904.	13.7	446
261	Dual Function Additives: A Small Molecule Crosslinker for Enhanced Efficiency and Stability in Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1401426.	19.5	61
262	A Nature-Inspired Conjugated Polymer for High Performance Transistors and Solar Cells. Macromolecules, 2015, 48, 5148-5154.	4.8	48
263	Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. Journal of the American Chemical Society, 2015, 137, 10383-10390.	13.7	41
264	Organic photovoltaics: Crosslinking for optimal morphology and stability. Materials Today, 2015, 18, 425-435.	14.2	127
265	Effect of Fluorination of 2,1,3-Benzothiadiazole. Journal of Organic Chemistry, 2015, 80, 5045-5048.	3.2	96
266	Polaron pair mediated triplet generation in polymer/fullerene blends. Nature Communications, 2015, 6, 6501.	12.8	74
267	Compatibility of amorphous triarylamine copolymers with solution-processed hole injecting metal oxide bottom contacts. Journal of Materials Chemistry C, 2015, 3, 4530-4536.	5. 5	7
268	An electron beam evaporated TiO ₂ layer for high efficiency planar perovskite solar cells on flexible polyethylene terephthalate substrates. Journal of Materials Chemistry A, 2015, 3, 22824-22829.	10.3	116
269	Non-Fullerene Electron Acceptors for Use in Organic Solar Cells. Accounts of Chemical Research, 2015, 48, 2803-2812.	15.6	1,063
270	Dithienosilolothiophene: A New Polyfused Donor for Organic Electronics. Macromolecules, 2015, 48, 5557-5562.	4.8	3

#	Article	IF	CITATIONS
271	Novel nature-inspired conjugated polymers for high performance transistors and solar cells (Presentation Recording). , 2015, , .		O
272	All-inkjet printed organic transistors: Dielectric surface passivation techniques for improved operational stability and lifetime. Microelectronics Reliability, 2015, 55, 1192-1195.	1.7	25
273	Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells. Journal of Physical Chemistry C, 2015, 119, 19668-19673.	3.1	22
274	2,1,3â€Benzothiadiazoleâ€5,6â€Dicarboxylic Imide – A Versatile Building Block for Additive†and Annealingâ€F Processing of Organic Solar Cells with Efficiencies Exceeding 8%. Advanced Materials, 2015, 27, 948-953.	Free 21.0	88
275	Organic photovoltaics and energy: general discussion. Faraday Discussions, 2014, 174, 341-355.	3.2	2
276	Photonics: general discussion. Faraday Discussions, 2014, 174, 235-253.	3.2	0
277	Advances in Charge Carrier Mobilities of Semiconducting Polymers Used in Organic Transistors. Chemistry of Materials, 2014, 26, 647-663.	6.7	377
278	Benzotrithiophene Copolymers: Influence of Molecular Packing and Energy Levels on Charge Carrier Mobility. Macromolecules, 2014, 47, 2883-2890.	4.8	26
279	Towards optimisation of photocurrent from fullerene excitons in organic solar cells. Energy and Environmental Science, 2014, 7, 1037.	30.8	42
280	Morphological Stability and Performance of Polymer–Fullerene Solar Cells under Thermal Stress: The Impact of Photoinduced PC ₆₀ BM Oligomerization. ACS Nano, 2014, 8, 1297-1308.	14.6	122
281	Approaching disorder-free transport in high-mobility conjugated polymers. Nature, 2014, 515, 384-388.	27.8	844
282	The effect of thiadiazole out-backbone displacement in indacenodithiophene semiconductor polymers. Journal of Materials Chemistry C, 2014, 2, 8789-8795.	5.5	23
283	Synthesis of [1]benzothieno[3,2-b][1]benzothiophene pendant and norbornene random co-polymers via ring opening metathesis. Journal of Materials Chemistry C, 2014, 2, 538-541.	5.5	11
284	Electron-deficient truxenone derivatives and their use in organic photovoltaics. Journal of Materials Chemistry A, 2014, 2, 12348-12354.	10.3	32
285	Polaron stability in semiconducting polymer neat films. Chemical Communications, 2014, 50, 14425-14428.	4.1	14
286	Reduced roughness for improved mobility in benzodipyrrolidone-based, n-type OFETS. Journal of Materials Chemistry C, 2014, 2, 8822-8828.	5.5	24
287	Power conversion efficiency enhancement in diketopyrrolopyrrole based solar cells through polymer fractionation. Journal of Materials Chemistry C, 2014, 2, 8593-8598.	5.5	14
288	Effect of Chalcogen Atom Substitution on the Optoelectronic Properties in Cyclopentadithiophene Polymers. Macromolecules, 2014, 47, 5889-5894.	4.8	76

#	Article	IF	Citations
289	Enhancing Fullereneâ∈Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. Angewandte Chemie - International Edition, 2014, 53, 12870-12875.	13.8	86
290	Thieno[3,2â€ <i>>b</i>)]thiophene Flanked Isoindigo Polymers for High Performance Ambipolar OFET Applications. Advanced Functional Materials, 2014, 24, 7109-7115.	14.9	58
291	Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing. Journal of Materials Chemistry A, 2014, 2, 19282-19289.	10.3	25
292	Bis-lactam-based donor polymers for organic solar cells: Evolution by design. Thin Solid Films, 2014, 560, 82-85.	1.8	3
293	Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices. Advanced Functional Materials, 2014, 24, 1474-1482.	14.9	71
294	Enhancing Fullereneâ€Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. Angewandte Chemie, 2014, 126, 13084-13089.	2.0	8
295	Alkyl Chain Extension as a Route to Novel Thieno[3,2- <i>b</i>]thiophene Flanked Diketopyrrolopyrrole Polymers for Use in Organic Solar Cells and Field Effect Transistors. Macromolecules, 2013, 46, 5961-5967.	4.8	67
296	Molecular origin of high field-effect mobility in an indacenodithiophene–benzothiadiazole copolymer. Nature Communications, 2013, 4, 2238.	12.8	456
297	Photocurrent Enhancement from Diketopyrrolopyrrole Polymer Solar Cells through Alkyl-Chain Branching Point Manipulation. Journal of the American Chemical Society, 2013, 135, 11537-11540.	13.7	258
298	New Fused Bis-Thienobenzothienothiophene Copolymers and Their Use in Organic Solar Cells and Transistors. Macromolecules, 2013, 46, 727-735.	4.8	43
299	Synthesis and morphology of asymmetric, alkyne-functionalised pentacene and 2-fluoroanthradithiophene. Tetrahedron Letters, 2013, 54, 6814-6818.	1.4	1
300	Isostructural, Deeper Highest Occupied Molecular Orbital Analogues of Poly(3-hexylthiophene) for High-Open Circuit Voltage Organic Solar Cells. Chemistry of Materials, 2013, 25, 4239-4249.	6.7	55
301	Post-Polymerization Ketalization for Improved Organic Photovoltaic Materials. Macromolecules, 2013, 46, 7727-7732.	4.8	14
302	Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices. Journal of Physical Chemistry Letters, 2013, 4, 209-215.	4.6	120
303	Efficient truxenone-based acceptors for organic photovoltaics. Journal of Materials Chemistry A, 2013, 1, 73-76.	10.3	48
304	Effects of Confinement on Microstructure and Charge Transport in High Performance Semicrystalline Polymer Semiconductors. Advanced Functional Materials, 2013, 23, 2091-2098.	14.9	77
305	BPTs: thiophene-flanked benzodipyrrolidone conjugated polymers for ambipolar organic transistors. Chemical Communications, 2013, 49, 4465.	4.1	63
306	Effect of Fluorination on the Properties of a Donor–Acceptor Copolymer for Use in Photovoltaic Cells and Transistors. Chemistry of Materials, 2013, 25, 277-285.	6.7	218

#	Article	IF	Citations
307	Dihydropyrroloindoledione-based copolymers for organic electronics. Journal of Materials Chemistry C, 2013, 1, 2711.	5.5	19
308	Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films. Chemical Communications, 2013, 49, 1291.	4.1	136
309	Organic Electronics. Advanced Materials, 2013, 25, 1811-1812.	21.0	22
310	High Mobility Fieldâ€Effect Transistors with Versatile Processing from a Smallâ€Molecule Organic Semiconductor. Advanced Materials, 2013, 25, 4352-4357.	21.0	126
311	Pyrroloindacenodithiophene polymers: the effect of molecular structure on OFET performance. Polymer Chemistry, 2013, 4, 3537.	3.9	23
312	Recent advances in transistor performance of polythiophenes. Progress in Polymer Science, 2013, 38, 2053-2069.	24.7	117
313	The Influence of Polymer Purification on Photovoltaic Device Performance of a Series of Indacenodithiophene Donor Polymers. Advanced Materials, 2013, 25, 2029-2034.	21.0	129
314	Influence of Crystallinity and Energetics on Charge Separation in Polymer–Inorganic Nanocomposite Films for Solar Cells. Scientific Reports, 2013, 3, 1531.	3.3	84
315	Improved Field-Effect Transistor Performance of a Benzotrithiophene Polymer through Ketal Cleavage in the Solid State. ACS Applied Materials & Samp; Interfaces, 2013, 5, 1806-1810.	8.0	23
316	Correction to "Improved Field-Effect Transistor Performance of a Benzotrithiophene Polymer through Ketal Cleavage in the Solid State― ACS Applied Materials & Diterfaces, 2013, 5, 2783-2783.	8.0	0
317	Recent Advances in the Development of Semiconducting DPPâ€Containing Polymers for Transistor Applications. Advanced Materials, 2013, 25, 1859-1880.	21.0	793
318	Inkjet-Printed Organic Electronics: Operational Stability and Reliability Issues. ECS Transactions, 2013, 53, 1-10.	0.5	1
319	<i>In-situ</i> monitoring of molecular vibrations of two organic semiconductors in photovoltaic blends and their impact on thin film morphology. Applied Physics Letters, 2013, 102, .	3.3	24
320	Synthesis of two dihydropyrroloindoledioneâ€based copolymers for organic electronics. Journal of Polymer Science Part A, 2013, 51, 1285-1291.	2.3	24
321	Polymers for Transistors. , 2013, , 1-12.		0
322	Alkyl side-chain branching point effects in thieno [3,4-c] pyrrole-4,6-dione copolymers. Journal of Organic Semiconductors, 2013, 1, 30-35.	1.2	7
323	Thieno[3,2â€ <i>b</i> jthiopheneâ€diketopyrrolopyrrole Containing Polymers for Inverted Solar Cells Devices with High Short Circuit Currents. Advanced Functional Materials, 2013, 23, 5647-5654.	14.9	78
324	Germaindacenodithiophene based low band gap polymers for organic solar cells. Chemical Communications, 2012, 48, 2955.	4.1	53

#	Article	IF	Citations
325	A new thiophene substituted isoindigo based copolymer for high performance ambipolar transistors. Chemical Communications, 2012, 48, 3939.	4.1	225
326	Competition between the Charge Transfer State and the Singlet States of Donor or Acceptor Limiting the Efficiency in Polymer:Fullerene Solar Cells. Journal of the American Chemical Society, 2012, 134, 685-692.	13.7	238
327	Random benzotrithiophene-based donor–acceptor copolymers for efficient organic photovoltaic devices. Chemical Communications, 2012, 48, 5832.	4.1	111
328	On the Energetic Dependence of Charge Separation in Low-Band-Gap Polymer/Fullerene Blends. Journal of the American Chemical Society, 2012, 134, 18189-18192.	13.7	180
329	Use of Xâ∈Ray Diffraction, Molecular Simulations, and Spectroscopy to Determine the Molecular Packing in a Polymerâ∈Fullerene Bimolecular Crystal. Advanced Materials, 2012, 24, 6071-6079.	21.0	126
330	Factors Governing Intercalation of Fullerenes and Other Small Molecules Between the Side Chains of Semiconducting Polymers Used in Solar Cells. Advanced Energy Materials, 2012, 2, 1208-1217.	19.5	97
331	Electronic structure tuning of new fused thieno[3,2-b]thieno bisthiophene based polymers via alkyl chain and Group IV heteroatom modulation. Proceedings of SPIE, 2012, , .	0.8	0
332	Synthesis of novel thieno [3,2-b] thienobis (silolothiophene) based low bandgap polymers for organic photovoltaics. Chemical Communications, 2012, 48, 7699.	4.1	63
333	Correlating crystallinity and photophysics for donor polymers of interest for organic photovoltaic devices. Proceedings of SPIE, 2012, , .	0.8	0
334	Charge photogeneration in donor/acceptor organic solar cells. Journal of Photonics for Energy, 2012, 2, 021001.	1.3	11
335	Efficient Charge Photogeneration by the Dissociation of PC70BM Excitons in Polymer/Fullerene Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 140-144.	4.6	56
336	Recent advances in high mobility donor–acceptor semiconducting polymers. Journal of Materials Chemistry, 2012, 22, 14803.	6.7	138
337	Photovoltaic and field effect transistor performance of selenophene and thiophene diketopyrrolopyrrole co-polymers with dithienothiophene. Journal of Materials Chemistry, 2012, 22, 12817.	6.7	92
338	Correlating Emissive Nonâ€Geminate Charge Recombination with Photocurrent Generation Efficiency in Polymer/Perylene Diimide Organic Photovoltaic Blend Films. Advanced Functional Materials, 2012, 22, 2318-2326.	14.9	28
339	Silaindacenodithiopheneâ€Based Low Band Gap Polymers – The Effect of Fluorine Substitution on Device Performances and Film Morphologies. Advanced Functional Materials, 2012, 22, 1663-1670.	14.9	177
340	Solutionâ€Processed Small Moleculeâ€Polymer Blend Organic Thinâ€Film Transistors with Hole Mobility Greater than 5 cm ² /Vs. Advanced Materials, 2012, 24, 2441-2446.	21.0	219
341	A Systematic Approach to the Design Optimization of Lightâ€Absorbing Indenofluorene Polymers for Organic Photovoltaics. Advanced Energy Materials, 2012, 2, 260-265.	19.5	48
342	Design of Semiconducting Indacenodithiophene Polymers for High Performance Transistors and Solar Cells. Accounts of Chemical Research, 2012, 45, 714-722.	15.6	256

#	Article	IF	CITATIONS
343	Photoconductivity anisotropy study in uniaxially aligned polymer based planar photodiodes. Organic Electronics, 2012, 13, 36-42.	2.6	14
344	Highâ€Performance Ambipolar Diketopyrrolopyrroleâ€Thieno[3,2â€∢i>b⟨/i>]thiophene Copolymer Fieldâ€Effect Transistors with Balanced Hole and Electron Mobilities. Advanced Materials, 2012, 24, 647-652.	21.0	521
345	Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer. Physical Review B, 2011, 84, .	3.2	39
346	Benzotrithiophene - A Planar, Electron-Rich Building Block for Organic Semiconductors. Organic Letters, 2011, 13, 2414-2417.	4.6	68
347	Indacenodithiophene- <i>co</i> -benzothiadiazole Copolymers for High Performance Solar Cells or Transistors via Alkyl Chain Optimization. Macromolecules, 2011, 44, 6649-6652.	4.8	165
348	Benzotrithiophene Co-polymers with High Charge Carrier Mobilities in Field-Effect Transistors. Chemistry of Materials, 2011, 23, 4025-4031.	6.7	56
349	Pyrroloindacenodithiophene containing polymers for organic field effect transistors and organic photovoltaics. Journal of Materials Chemistry, 2011, 21, 18744.	6.7	50
350	A benzotrithiophene-based low band gap polymer for polymer solar cells with high open-circuit voltage. Journal of Materials Chemistry, 2011, 21, 17642.	6.7	44
351	Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors. Chemistry of Materials, 2011, 23, 768-770.	6.7	126
352	Molecular Packing of High-Mobility Diketo Pyrrolo-Pyrrole Polymer Semiconductors with Branched Alkyl Side Chains. Journal of the American Chemical Society, 2011, 133, 15073-15084.	13.7	381
353	Thin-Film Morphology of Inkjet-Printed Single-Droplet Organic Transistors Using Polarized Raman Spectroscopy: Effect of Blending TIPS-Pentacene with Insulating Polymer. ACS Nano, 2011, 5, 9824-9835.	14.6	118
354	Influence of blend microstructure on bulk heterojunction organic photovoltaic performance. Chemical Society Reviews, 2011, 40, 1185-1199.	38.1	511
355	Energy versuselectron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene: fullerene blend films. Chemical Science, 2011, 2, 1111.	7.4	45
356	Thieno[3,2- <i>b</i>]thiopheneâ^Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. Journal of the American Chemical Society, 2011, 133, 3272-3275.	13.7	854
357	The phase behavior of a polymerâ€fullerene bulk heterojunction system that contains bimolecular crystals. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 499-503.	2.1	71
358	Synthesis of a Novel Fused Thiopheneâ€thieno[3,2â€b]thiopheneâ€thiophene Donor Monomer and Coâ€polymer for Use in OPV and OFETs. Macromolecular Rapid Communications, 2011, 32, 1664-1668.	3.9	41
359	Anisotropy of Charge Transport in a Uniaxially Aligned and Chainâ€Extended, Highâ€Mobility, Conjugated Polymer Semiconductor. Advanced Functional Materials, 2011, 21, 932-940.	14.9	166
360	Efficient Quenching of a Guanidinium-Containing Fluorescence Sensor. ChemPhysChem, 2011, 12, 765-768.	2.1	6

#	Article	IF	Citations
361	Percolation behaviour in high mobility p-channel polymer/small-molecule blend organic field-effect transistors. Organic Electronics, 2011, 12, 143-147.	2.6	46
362	Polymerizable Liquid Crystal Networks for Semiconductor Applications. Liquid Crystals Book Series, 2011, , 287-318.	0.0	1
363	Indacenodithiophene Semiconducting Polymers for High-Performance, Air-Stable Transistors. Journal of the American Chemical Society, 2010, 132, 11437-11439.	13.7	529
364	Polymer Fieldâ€Effect Transistors Fabricated by the Sequential Gravure Printing of Polythiophene, Two Insulator Layers, and a Metal Ink Gate. Advanced Functional Materials, 2010, 20, 239-246.	14.9	122
365	The Influence of Film Morphology in Highâ€Mobility Smallâ€Molecule:Polymer Blend Organic Transistors. Advanced Functional Materials, 2010, 20, 2330-2337.	14.9	120
366	Inâ€Plane Liquid Crystalline Texture of Highâ€Performance Thienothiophene Copolymer Thin Films. Advanced Functional Materials, 2010, 20, 4098-4106.	14.9	67
367	Microstructural Origin of High Mobility in Highâ€Performance Poly(thienoâ€ŧhiophene) Thinâ€Film Transistors. Advanced Materials, 2010, 22, 697-701.	21.0	7 5
368	High Mobility Ambipolar Charge Transport in Polyselenophene Conjugated Polymers. Advanced Materials, 2010, 22, 2371-2375.	21.0	178
369	Solidâ€State Processing of Organic Semiconductors. Advanced Materials, 2010, 22, 3942-3947.	21.0	46
370	Airâ€Stable Solutionâ€Processed Hybrid Transistors with Hole and Electron Mobilities Exceeding 2 cm ² V ^{â~1} s ^{â~1} . Advanced Materials, 2010, 22, 3598-3602.	21.0	56
371	Revealing Buried Interfaces to Understand the Origins of Threshold Voltage Shifts in Organic Fieldâ€Effect Transistors. Advanced Materials, 2010, 22, 5105-5109.	21.0	101
372	Analysis of Charge Photogeneration as a Key Determinant of Photocurrent Density in Polymer: Fullerene Solar Cells. Advanced Materials, 2010, 22, 5287-5291.	21.0	56
373	Recombination Dynamics as a Key Determinant of Open Circuit Voltage in Organic Bulk Heterojunction Solar Cells: A Comparison of Four Different Donor Polymers. Advanced Materials, 2010, 22, 4987-4992.	21.0	368
374	Delayed Luminescence Spectroscopy of Organic Photovoltaic Binary Blend Films: Probing the Emissive Nonâ€geminate Charge Recombination. Advanced Materials, 2010, 22, 5183-5187.	21.0	24
375	Organic Electronics - From Materials to Applications. Advanced Materials, 2010, 22, 3760-3761.	21.0	7
376	Polyterthiophenes Incorporating 3,4â€Difluorothiophene Units: Application in Organic Fieldâ€Effect Transistors. Macromolecular Chemistry and Physics, 2010, 211, 2642-2648.	2.2	10
377	Correlations between Mechanical and Electrical Properties of Polythiophenes. ACS Nano, 2010, 4, 7538-7544.	14.6	210
378	Bulk charge transport in liquid-crystalline polymer semiconductors based on poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). Polymer Chemistry, 2010, 1, 1448.	3.9	10

#	Article	IF	CITATIONS
379	Photoinduced Charge Carrier Generation in Blends of Poly(Thienothiophene) Derivatives and [6,6]-Phenyl-C61-butyric Acid Methyl Ester: Phase Segregation versus Intercalation. Journal of Physical Chemistry C, 2010, 114, 15116-15120.	3.1	37
380	Charge Photogeneration in Low Band Gap Polyselenophene/Fullerene Blend Films. Journal of Physical Chemistry C, 2010, 114, 8068-8075.	3.1	58
381	Materials and Applications for Large Area Electronics: Solution-Based Approaches. Chemical Reviews, 2010, 110, 3-24.	47.7	1,646
382	Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. Macromolecules, 2010, 43, 1169-1174.	4.8	92
383	Acceptor Energy Level Control of Charge Photogeneration in Organic Donor/Acceptor Blends. Journal of the American Chemical Society, 2010, 132, 12919-12926.	13.7	128
384	Solution-processed organic transistors based on semiconducting blends. Journal of Materials Chemistry, 2010, 20, 2562.	6.7	201
385	Ink-jet printed p-type polymer electronics based on liquid-crystalline polymer semiconductors. Journal of Materials Chemistry, 2010, 20, 1927.	6.7	41
386	Local Charge Trapping in Conjugated Polymers Resolved by Scanning Kelvin Probe Microscopy. Physical Review Letters, 2009, 103, 256803.	7.8	61
387	Separate charge transport pathways determined by the time of flight method in bimodal polytriarylamine. Journal of Applied Physics, 2009, 105, .	2.5	29
388	Relating microstructure to transport in organic semiconductor transistors. , 2009, , .		0
389	Solution processed low-voltage organic transistors and complementary inverters. Applied Physics Letters, 2009, 95, .	3.3	30
390	Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells. Advanced Functional Materials, 2009, 19, 1173-1179.	14.9	392
391	Doping of Conjugated Polythiophenes with Alkyl Silanes. Advanced Functional Materials, 2009, 19, 1906-1911.	14.9	107
392	Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thinâ∈Film Organic Transistors. Advanced Materials, 2009, 21, 1091-1109.	21.0	412
393	Solid‧tate Supramolecular Organization of Polythiophene Chains Containing Thienothiophene Units. Advanced Materials, 2009, 21, 1193-1198.	21.0	76
394	Highâ€Performance Polymer‧mall Molecule Blend Organic Transistors. Advanced Materials, 2009, 21, 1166-1171.	21.0	351
395	Chargeâ€Transport Anisotropy Due to Grain Boundaries in Directionally Crystallized Thin Films of Regioregular Poly(3â€hexylthiophene). Advanced Materials, 2009, 21, 1568-1572.	21.0	305
396	Polaron Localization at Interfaces in Highâ€Mobility Microcrystalline Conjugated Polymers. Advanced Materials, 2009, 21, 3759-3763.	21.0	105

#	Article	IF	CITATIONS
397			

#	Article	IF	CITATIONS
415	An alignable fluorene thienothiophene copolymer with deep-blue electroluminescent emission at 410Ânm. Chemical Communications, 2008, , 1079.	4.1	49
416	Bulk Heterojunction Materials Composed of Poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2- <i>b</i>)thiophene): Ultrafast Electron Transfer and Carrier Recombination. Journal of Physical Chemistry C, 2008, 112, 7853-7857.	3.1	44
417	Molecular Basis of Mesophase Ordering in a Thiophene-Based Copolymer. Macromolecules, 2008, 41, 5709-5715.	4.8	114
418	Electrical Properties of Reactive Liquid Crystal Semiconductors. Japanese Journal of Applied Physics, 2008, 47, 488-491.	1.5	20
419	The Impact of the Dielectric/Semiconductor Interface on Microstructure and Charge Carrier Transport in High-Performance Polythiophene Transistors. ECS Transactions, 2008, 13, 113-122.	0.5	2
420	High-performance organic integrated circuits based on solution processable polymer-small molecule blends. Applied Physics Letters, 2008, 93, .	3.3	74
421	Organic bulk heterojunction solar cells using poly(2,5-bis(3-tetradecyllthiophen-2-yl)thieno[3,2,-b]thiophene). Applied Physics Letters, 2008, 92, .	3.3	110
422	Theoretical and experimental investigations of a polyalkylated-thieno[3,2-b]thiophene semiconductor. Journal of Applied Physics, 2008, 104, 083705.	2.5	10
423	Progress and Challenges in Commercialization of Organic Electronics. MRS Bulletin, 2008, 33, 653-662.	3.5	105
424	Polymer thin film transistor without surface pretreatment on silicon nitride gate dielectric. Applied Physics Letters, 2008, 93, 073305.	3.3	6
425	Influence of source-drain electric field on mobility and charge transport in organic field-effect transistors. Journal of Applied Physics, 2007, 102, .	2.5	47
426	A comprehensive study of the effect of reactive end groups on the charge carrier transport within polymerized and nonpolymerized liquid crystals. Journal of Applied Physics, 2007, 101, 023713.	2.5	23
427	Effects of the surface roughness of plastic-compatible inorganic dielectrics on polymeric thin film transistors. Applied Physics Letters, 2007, 90, 233508.	3.3	66
428	Achieving high mobilities in solution-processable organic FETs by minimizing contact effects. , 2007, , .		0
429	Undoped polythiophene field-effect transistors with mobility of 1cm2Vâ^'1sâ^'1. Applied Physics Letters, 2007, 91, .	3. 3	223
430	Relative importance of polaron activation and disorder on charge transport in high-mobility conjugated polymer field-effect transistors. Physical Review B, 2007, 76, .	3.2	84
431	Reliable Suzuki Chemistry For Functionalised Polythiophene Synthesis. Materials Research Society Symposia Proceedings, 2007, 1003, 1.	0.1	0
432	Distinguishing between nonlinear channel transport and contact effects in organic FETs. Proceedings of SPIE, 2007, , .	0.8	3

#	Article	IF	CITATIONS
433	A study of the effects metal residues in poly(9,9-dioctylfluorene) have on field-effect transistor device characteristics. Synthetic Metals, 2007, 157, 872-875.	3.9	16
434	Electrochemical Doping in Electrolyte-Gated Polymer Transistors. Journal of the American Chemical Society, 2007, 129, 14367-14371.	13.7	145
435	Electronic Structure and Charge-Transport Properties of Polythiophene Chains Containing Thienothiophene Units: A Joint Experimental and Theoretical Study. Chemistry of Materials, 2007, 19, 4949-4956.	6.7	63
436	Combinatorial screening of the effect of temperature on the microstructure and mobility of a high performance polythiophene semiconductor. Applied Physics Letters, 2007, 90, 012112.	3.3	27
437	Amplified fluorescence quenching in high ionic strength media. Soft Matter, 2007, 3, 1381.	2.7	13
438	Polymer chain/nanocrystal ordering in thin films of regioregular poly(3-hexylthiophene) and blends with a soluble fullerene. Soft Matter, 2007, 3, 117-121.	2.7	37
439	Synthesis of an End-Capped Sexithiophene Bearing Fused Tetrathiafulvalene (TTF) Units. Organic Letters, 2007, 9, 1601-1604.	4.6	19
440	Regioregular poly(3-hexyl)selenophene: a low band gap organic hole transporting polymer. Chemical Communications, 2007, , 5061.	4.1	322
441	Effect of the End Group of Regioregular Poly(3-hexylthiophene) Polymers on the Performance of Polymer/Fullerene Solar Cells. Journal of Physical Chemistry C, 2007, 111, 8137-8141.	3.1	96
442	Structural and Electronic Effects of 1,3,4-Thiadiazole Units Incorporated into Polythiophene Chains. Macromolecules, 2007, 40, 6585-6593.	4.8	50
443	Polyterthiophenes as Donors for Polymer Solar Cells. Advanced Functional Materials, 2007, 17, 1371-1376.	14.9	89
444	High Carrier Mobility Polythiophene Thin Films: Structure Determination by Experiment and Theory. Advanced Materials, 2007, 19, 833-837.	21.0	276
445	Dynamics of Threshold Voltage Shifts in Organic and Amorphous Silicon Fieldâ€Effect Transistors. Advanced Materials, 2007, 19, 2785-2789.	21.0	223
446	Studies of Highly Regioregular Poly(3â€hexylselenophene) for Photovoltaic Applications. Advanced Materials, 2007, 19, 4544-4547.	21.0	154
447	Critical Role of Side-Chain Attachment Density on the Order and Device Performance of Polythiophenes. Macromolecules, 2007, 40, 7960-7965.	4.8	321
448	X-ray Scattering Study of Thin Films of Poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). Journal of the American Chemical Society, 2007, 129, 3226-3237.	13.7	351
449	Significant dependence of morphology and charge carrier mobility on substrate surface chemistry in high performance polythiophene semiconductor films. Applied Physics Letters, 2007, 90, 062117.	3.3	136
450	TOF mobility measurements in pristine films of P3HT: control of hole injection and influence of film thickness., 2006, 6334, 16.		10

#	Article	IF	CITATIONS
451	Beyond the metal-insulator transition in polymer electrolyte gated polymer field-effect transistors. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11834-11837.	7.1	165
452	Molecular-weight dependence of interchain polaron delocalization and exciton bandwidth in high-mobility conjugated polymers. Physical Review B, 2006, 74, .	3.2	262
453	Photolithographically patternable electroluminescent liquid crystalline materials for full-colour organic light emitting displays. , 2006, , .		0
454	The influence of molecular weight on the microstructure and thin film transistor characteristics of pBTTT polymers , 2006, , .		9
455	Designing solution-processable air-stable liquid crystalline crosslinkable semiconductors. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 2779-2787.	3.4	11
456	A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nature Materials, 2006, 5, 197-203.	27.5	2,208
457	Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Materials, 2006, 5, 328-333.	27.5	2,001
458	Suzuki route to regioregular polyalkylthiophenes using Ir-catalysed borylation to make the monomer, and Pd complexes of bulky phosphanes as coupling catalysts for polymerisation. Tetrahedron Letters, 2006, 47, 5143-5146.	1.4	58
459	Radical ion pair mediated triplet formation in polymer–fullerene blend films. Chemical Communications, 2006, , 3939-3941.	4.1	51
460	Direct measurement of carrier drift velocity and mobility in a polymer field-effect transistor. Applied Physics Letters, 2006, 89, 242104.	3.3	18
461	Morphological Basis for High Mobility of Poly(bithiophene thienothiophene). , 2006, , .		0
462	Stable semiconducting thiophene polymers and their field effect transistor characteristics. , 2005, , .		2
463	Effects of semiconductor-dielectric interfaces on polymeric thin-film transistors. , 2005, , .		3
464	Insulators and device geometry in polymer field effect transistors. Organic Electronics, 2005, 6, 142-146.	2.6	5
465	The first direct experimental comparison between the hugely contrasting properties of PEDOT and the all-sulfur analogue PEDTT by analogy with well-defined EDTT–EDOT copolymers. Journal of Materials Chemistry, 2005, 15, 4783.	6.7	94
466	Rolling out organic electronics. Nature Materials, 2005, 4, 583-584.	27.5	51
467	Ambipolar Field-Effect Transistors Based on Solution-Processable Blends of Thieno [2,3-b]thiophene Terthiophene Polymer and Methanofullerenes. Advanced Materials, 2005, 17, 2608-2612.	21.0	93
468	Photopolymerization of Reactive Mesogens. Macromolecular Chemistry and Physics, 2005, 206, 2153-2159.	2.2	35

#	Article	IF	Citations
469	High mobility ambipolar charge transport in a cross-linked reactive mesogen at room temperature. Applied Physics Letters, 2005, 87, 172110.	3.3	33
470	Emission Quenching of a Poly(Phenylene Ethynylene) (PPE) in the Solid State. Materials Research Society Symposia Proceedings, 2005, 888, 1.	0.1	0
471	Influence of Molecular Design on the Field-Effect Transistor Characteristics of Terthiophene Polymers. Chemistry of Materials, 2005, 17, 1381-1385.	6.7	116
472	Microwave-assisted synthesis of polythiophenes via the Stille coupling. Synthetic Metals, 2005, 148, 195-198.	3.9	113
473	Thiophene and Selenophene Copolymers Incorporating Fluorinated Phenylene Units in the Main Chain:  Synthesis, Characterization, and Application in Organic Field-Effect Transistors. Chemistry of Materials, 2005, 17, 6567-6578.	6.7	154
474	Stable Polythiophene Semiconductors Incorporating Thieno [2,3-b] thiophene. Journal of the American Chemical Society, 2005, 127, 1078-1079.	13.7	343
475	Hexyl-substituted oligothiophenes with a central tetrafluorophenylene unit: crystal engineering of planar structures for p-type organic semiconductors. Chemical Communications, 2005, , 1465.	4.1	61
476	Lamination Method for the Study of Interfaces in Polymeric Thin Film Transistors. Journal of the American Chemical Society, 2004, 126, 13928-13929.	13.7	96
477	Enhanced Mobility of Poly(3-hexylthiophene) Transistors by Spin-Coating from High-Boiling-Point Solvents. Chemistry of Materials, 2004, 16, 4772-4776.	6.7	878
478	Electronic structure of a novel alkylidene fluorene polymer in the pristine state. Chemical Physics Letters, 2004, 385, 184-188.	2.6	5
479	High ambipolar and balanced carrier mobility in regioregular poly(3-hexylthiophene). Applied Physics Letters, 2004, 85, 3890-3892.	3.3	202
480	Influence of intensive light exposure on polymer field-effect transistors. Applied Physics Letters, 2004, 85, 1377-1379.	3.3	41
481	Alkylidene Fluorene Liquid Crystalline Semiconducting Polymers for Organic Field Effect Transistor Devices. Macromolecules, 2004, 37, 5250-5256.	4.8	80
482	4-Hexylbithieno[3,2-b:2â€~3â€~-e]pyridine: An Efficient Electron-Accepting Unit in Fluorene and Indenofluorene Copolymers for Light-Emitting Devices. Macromolecules, 2004, 37, 709-715.	4.8	55
483	Air-stable all-polymer field-effect transistors with organic electrodes. Synthetic Metals, 2004, 145, 83-85.	3.9	68
484	Self-assembled liquid crystalline solution processable semiconductors. , 2004, , .		1
485	Polymerisable liquid crystalline organic semiconductors and their fabrication in organic field effect transistors. Journal of Materials Chemistry, 2003, 13, 2436.	6.7	99
486	Further evidence for spontaneous solid-state polymerisation reactions in 2,5-dibromothiophene derivativesElectronic supplementary information (ESI) available: X-ray data for DBMDTT, DBEDTT and DBPDTT. See http://www.rsc.org/suppdata/jm/b3/b307575n/. Journal of Materials Chemistry, 2003, 13, 2075.	6.7	64

#	Article	IF	CITATIONS
487	New liquid crystalline solution processible organic semiconductors and their performance in field effect transistors., 2003,,.		5
488	High Performance Organic Field-Effect Transistors and Integrated Inverters. Materials Research Society Symposia Proceedings, 2001, 665, 1.	0.1	20
489	Side chain pendant non-linear optically active polymers synthesised by grafting reactions on maleic anhydride copolymers. Macromolecular Chemistry and Physics, 1996, 197, 687-699.	2.2	3
490	Photochemical fabrication of nonlinear optical polymer waveguides. Advanced Materials, 1995, 7, 715-718.	21.0	6
491	Fluorinated NLO polymers with improved optical transparency in the near infrared. Journal of Polymer Science Part A, 1995, 33, 1177-1183.	2.3	29
492	Mechanical failure in thin-film nonlinear optical polymers: Structure and processing issues. Journal of Applied Polymer Science, 1994, 53, 665-676.	2.6	10
493	Synthesis and Electrooptic Characterization of a Novel Highly Active Indoline Nitroazobenzene Methacrylate Copolymer. Chemistry of Materials, 1994, 6, 611-613.	6.7	5
494	Thienothiophene Copolymers in Field Effect Transistors. , 0, , 647-672.		1
495	Ultrafast Energy Transfer Triggers Ionization Energy Offset Dependence of Quantum Efficiency in Low-bandgap Non-fullerene Acceptor Solar Cells. , 0, , .		0
496	Local sensorimotor control and learning in robotics with organic neuromorphic electronics., 0,,.		0
497	Efficiency Limits in Wideâ€Bandgap Geâ€Containing Donor Polymer:Nonfullerene Acceptor Bulk Heterojunction Solar Cells. Physica Status Solidi - Rapid Research Letters, 0, , 2100206.	2.4	1
498	Non-fullerene acceptors for high performance organic photovoltaics., 0,,.		0
499	Multi-Input Parameter Modulable Memtransistors from Hybrid Perovskite/Conjugated Polymer Heterostructures. , 0, , .		0
500	Lactone Maximization in Rigid Electron-Deficient Semiconducting Polymers Enabling High n-type Organic Thermoelectric Performance. , 0, , .		0
501	Understanding the effect of polymer hydration on n-type organic mixed semiconductor transistors. , 0, , .		0
502	Fundamentals of electrochemical doping in polythiophene polymers. , 0, , .		0
503	Operation mechanism of n-type organic electronic metabolite sensors. , 0, , .		0
504	Influence of side chains on the n-type organic electrochemical transistor performance. , 0, , .		0

#	Artic	CLE	IF	CITATIONS
50	5 CHAP Nano	PTER 3. High-performance Organic Photovoltaic Donor Polymers. RSC Nanoscience and technology, 0, , 69-108.	0.2	0
50	6 Addit Advar	tion of Diquat Enhances the Electron Mobility in Various Nonâ€Fullerene Acceptor Molecules. nced Functional Materials, 0, , 2202954.	14.9	6