
Seiji Hitoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5429766/publications.pdf Version: 2024-02-01

SEUL HITOSHI

#	Article	IF	CITATIONS
1	Fut9 Deficiency Causes Abnormal Neural Development in the Mouse Cerebral Cortex and Retina. Neurochemical Research, 2022, 47, 2793-2804.	3.3	3
2	Precise CAG repeat contraction in a Huntington's Disease mouse model is enabled by gene editing with SpCas9-NG. Communications Biology, 2021, 4, 771.	4.4	20
3	Life-Long Neural Stem Cells Are Fate-Specified at an Early Developmental Stage. Cerebral Cortex, 2020, 30, 6415-6425.	2.9	2
4	Early Maternal and Social Deprivation Expands Neural Stem Cell Population Size and Reduces Hippocampus/Amygdala-Dependent Fear Memory. Frontiers in Neuroscience, 2020, 14, 22.	2.8	11
5	Comprehensive evaluation of ubiquitous promoters suitable for the generation of transgenic cynomolgus monkeysâ€. Biology of Reproduction, 2019, 100, 1440-1452.	2.7	12
6	Minocycline Directly Enhances the Self-Renewal of Adult Neural Precursor Cells. Neurochemical Research, 2018, 43, 219-226.	3.3	3
7	Adult neurogenesis and its role in brain injury and psychiatric diseases. Journal of Neurochemistry, 2018, 147, 584-594.	3.9	42
8	Origin of oligodendrocytes in mammalian forebrains: a revised perspective. Journal of Physiological Sciences, 2017, 67, 63-70.	2.1	29
9	Generation of transgenic cynomolgus monkeys that express green fluorescent protein throughout the whole body. Scientific Reports, 2016, 6, 24868.	3.3	31
10	The Dorsoventral Boundary of the Germinal Zone is a Specialized Niche for the Generation of Cortical Oligodendrocytes during a Restricted Temporal Window. Cerebral Cortex, 2016, 26, 2800-2810.	2.9	20
11	Neural stem cells and neuro/gliogenesis in the central nervous system: understanding the structural and functional plasticity of the developing, mature, and diseased brain. Journal of Physiological Sciences, 2016, 66, 197-206.	2.1	34
12	Pain Pathway—Learning from History—. Spinal Surgery, 2015, 29, 287-292.	0.0	0
13	Bre1a, a Histone H2B Ubiquitin Ligase, Regulates the Cell Cycle and Differentiation of Neural Precursor Cells. Journal of Neuroscience, 2014, 34, 3067-3078.	3.6	17
14	Mechanisms for Interferon-α-Induced Depression and Neural Stem Cell Dysfunction. Stem Cell Reports, 2014, 3, 73-84.	4.8	61
15	Heterozygous Polg mutation causes motor dysfunction due to mt DNA deletions. Annals of Clinical and Translational Neurology, 2014, 1, 909-920.	3.7	18
16	Olig2â€lineage cells preferentially differentiate into oligodendrocytes but their processes degenerate at the chronic demyelinating stage of proteolipid proteinâ€overexpressing mouse. Journal of Neuroscience Research, 2013, 91, 178-186.	2.9	13
17	The Lewis X-related α1,3-Fucosyltransferase, Fut10, Is Required for the Maintenance of Stem Cell Populations. Journal of Biological Chemistry, 2013, 288, 28859-28868.	3.4	20
18	Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nature Neuroscience, 2011, 14, 957-964.	14.8	62

Seiji Ηιτοςhi

#	Article	IF	CITATIONS
19	Neuron-Specific Gene Transfer Through Retrograde Transport of Lentiviral Vector Pseudotyped with a Novel Type of Fusion Envelope Glycoprotein. Human Gene Therapy, 2011, 22, 1511-1523.	2.7	66
20	Culturing Adult Neural Stem Cells: Application to the Study of Neurodegenerative and Neuropsychiatric Pathology. , 2011, , 189-207.		3
21	Mood Stabilizing Drugs Expand the Neural Stem Cell Pool in the Adult Brain Through Activation of Notch Signaling. Stem Cells, 2008, 26, 1758-1767.	3.2	31
22	Heparan Sulfate Regulates Self-renewal and Pluripotency of Embryonic Stem Cells. Journal of Biological Chemistry, 2008, 283, 3594-3606.	3.4	99
23	Adhesion Is Prerequisite, But Alone Insufficient, to Elicit Stem Cell Pluripotency. Journal of Neuroscience, 2007, 27, 5437-5447.	3.6	13
24	Antidepressant drugs reverse the loss of adult neural stem cells following chronic stress. Journal of Neuroscience Research, 2007, 85, 3574-3585.	2.9	113
25	Notch Signaling Is Required to Maintain All Neural Stem Cell Populations – Irrespective of Spatial or Temporal Niche. Developmental Neuroscience, 2006, 28, 34-48.	2.0	97
26	Induction of oligodendrocyte progenitors in dorsal forebrain by intraventricular microinjection of FGF-2. Developmental Biology, 2006, 297, 262-273.	2.0	32
27	Vascular Endothelial Growth Factor Directly Inhibits Primitive Neural Stem Cell Survival But Promotes Definitive Neural Stem Cell Survival. Journal of Neuroscience, 2006, 26, 6803-6812.	3.6	95
28	Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes and Development, 2004, 18, 1806-1811.	5.9	164
29	Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes and Development, 2002, 16, 846-858.	5.9	585
30	Expression of the β-Galactoside α1,2-Fucosyltransferase Gene Suppresses Axonal Outgrowth of Neuro2a Neuroblastoma Cells. Journal of Neurochemistry, 2002, 66, 1633-1640.	3.9	12
31	Dorsal Root Ganglia-Specific Expression of the β-Galactoside α1,2-Fucosyltransferase Genes in Rabbits. Journal of Neurochemistry, 2002, 70, 2174-2178.	3.9	7
32	Neural stem cell lineages are regionally specified, but not committed, within distinct compartments of the developing brain. Development (Cambridge), 2002, 129, 233-44.	2.5	46
33	Direct Neural Fate Specification from Embryonic Stem Cells. Neuron, 2001, 30, 65-78.	8.1	683
34	Monospecific anti-GD1b lgG is required to induce rabbit ataxic neuropathy. Annals of Neurology, 1999, 45, 400-403.	5.3	60
35	Binding of antibodies against GM1 and GD1b in human peripheral nerve. , 1997, 20, 840-845.		51
36	Experimental sensory neuropathy induced by sensitization with ganglioside GD1b. Annals of Neurology, 1996, 39, 424-431.	5.3	182

#	Article	IF	CITATIONS
37	Anti-gal-C antibody in autoimmune neuropathies subsequent to mycoplasma infection. Muscle and Nerve, 1995, 18, 409-413.	2.2	89