Charles Reay Mackay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5429305/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 2022, 10, 9.	11.1	46
2	Neutrophil subsets and their differential roles in viral respiratory diseases. Journal of Leukocyte Biology, 2022, 111, 1159-1173.	3.3	11
3	Propionate Ameliorates Alcohol-Induced Liver Injury in Mice via the Gut–Liver Axis: Focus on the Improvement of Intestinal Permeability. Journal of Agricultural and Food Chemistry, 2022, 70, 6084-6096.	5.2	15
4	An acetateâ€yielding diet imprints an immune and antiâ€microbial programme against enteric infection. Clinical and Translational Immunology, 2021, 10, e1233.	3.8	23
5	Neutrophils in cancer—unresolved questions. Science China Life Sciences, 2021, 64, 1829-1841.	4.9	8
6	GPR43 regulates sodium butyrate-induced angiogenesis and matrix remodeling. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 320, H1066-H1079.	3.2	21
7	Fiber Derived Microbial Metabolites Prevent Acute Kidney Injury Through G-Protein Coupled Receptors and HDAC Inhibition. Frontiers in Cell and Developmental Biology, 2021, 9, 648639.	3.7	26
8	Dietary Fiber Drives IL-1β–Dependent Peritonitis Induced by Bacteroides fragilis via Activation of the NLRP3 Inflammasome. Journal of Immunology, 2021, 206, 2441-2452.	0.8	1
9	Gut microbial metabolites facilitate anticancer therapy efficacy by modulating cytotoxic CD8+ TÂcell immunity. Cell Metabolism, 2021, 33, 988-1000.e7.	16.2	264
10	pH and Proton Sensor GPR65 Determine Susceptibility to Atopic Dermatitis. Journal of Immunology, 2021, 207, 101-109.	0.8	13
11	Renal ACE2 (Angiotensin-Converting Enzyme 2) Expression Is Modulated by Dietary Fiber Intake, Gut Microbiota, and Their Metabolites. Hypertension, 2021, 77, e53-e55.	2.7	9
12	Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote TH2 and inhibit TH17 cell polarization. Nature Immunology, 2021, 22, 1538-1550.	14.5	61
13	Diet, the Gut Microbiome, and Autoimmune Diseases. , 2020, , 331-342.		3
14	Manipulation of the gut microbiota by the use of prebiotic fibre does not override a genetic predisposition to heart failure. Scientific Reports, 2020, 10, 17919.	3.3	8
15	Acetate coordinates neutrophil and ILC3 responses against <i>C. difficile</i> through FFAR2. Journal of Experimental Medicine, 2020, 217, .	8.5	116
16	Dietary Fiber Protects against Diabetic Nephropathy through Short-Chain Fatty Acid–Mediated Activation of G Protein–Coupled Receptors GPR43 and GPR109A. Journal of the American Society of Nephrology: JASN, 2020, 31, 1267-1281.	6.1	153
17	Targeting NLRP3 and Staphylococcal pore-forming toxin receptors in human-induced pluripotent stem cell-derived macrophages. Journal of Leukocyte Biology, 2020, 108, 967-981.	3.3	19
18	Maternal carriage of Prevotella during pregnancy associates with protection against food allergy in the offspring. Nature Communications, 2020, 11, 1452.	12.8	84

#	Article	IF	CITATIONS
19	Deficiency of Prebiotic Fiber and Insufficient Signaling Through Gut Metabolite-Sensing Receptors Leads to Cardiovascular Disease. Circulation, 2020, 141, 1393-1403.	1.6	176
20	Therapeutic blockade of CXCR2 rapidly clears inflammation in arthritis and atopic dermatitis models: demonstration with surrogate and humanized antibodies. MAbs, 2020, 12, 1856460.	5.2	13
21	Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic―and GPR109aâ€mediated mechanisms. FASEB Journal, 2019, 33, 11894-11908.	0.5	70
22	Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell development in preeclampsia. Nature Communications, 2019, 10, 3031.	12.8	91
23	Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nature Communications, 2019, 10, 3273.	12.8	234
24	Guidelines for Transparency on Gut Microbiome Studies in Essential and Experimental Hypertension. Hypertension, 2019, 74, 1279-1293.	2.7	54
25	Dysfunctional microbiota with reduced capacity to produce butyrate as a basis for allergic diseases. Journal of Allergy and Clinical Immunology, 2019, 144, 1513-1515.	2.9	13
26	Gαs oupled <scp>GPCR</scp> s <scp>GPR</scp> 65 and <scp>GPR</scp> 174. Downers for immune responses. Immunology and Cell Biology, 2018, 96, 341-343.	2.3	12
27	Beyond gut feelings: how the gut microbiota regulates blood pressure. Nature Reviews Cardiology, 2018, 15, 20-32.	13.7	287
28	C5a receptor 1 promotes autoimmunity, neutrophil dysfunction and injury in experimental anti-myeloperoxidase glomerulonephritis. Kidney International, 2018, 93, 615-625.	5.2	64
29	The Metabolic Sensor GPR43 Receptor Plays a Role in the Control of Klebsiella pneumoniae Infection in the Lung. Frontiers in Immunology, 2018, 9, 142.	4.8	72
30	Diet-Derived Short Chain Fatty Acids Stimulate Intestinal Epithelial Cells To Induce Mucosal Tolerogenic Dendritic Cells. Journal of Immunology, 2017, 198, 2172-2181.	0.8	172
31	c-Myb Regulates the T-Bet-Dependent Differentiation Program in B Cells to Coordinate Antibody Responses. Cell Reports, 2017, 19, 461-470.	6.4	53
32	Metabolite-Sensing G Protein–Coupled Receptors—Facilitators of Diet-Related Immune Regulation. Annual Review of Immunology, 2017, 35, 371-402.	21.8	235
33	Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology, 2017, 18, 552-562.	14.5	551
34	High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation, 2017, 135, 964-977.	1.6	695
35	The nutritionâ€gut microbiomeâ€physiology axis and allergic diseases. Immunological Reviews, 2017, 278, 277-295	6.0	223
36	Fermentable carbohydrate stimulates FFAR2-dependent colonic PYY cell expansionÂtoÂincrease satiety. Molecular Metabolism, 2017, 6, 48-60.	6.5	179

#	Article	IF	CITATIONS
37	Dietary fiber and the short-chain fatty acid acetate promote resolution of neutrophilic inflammation in a model of gout in mice. Journal of Leukocyte Biology, 2017, 101, 275-284.	3.3	104
38	A fully humanized IgC-like bispecific antibody for effective dual targeting of CXCR3 and CCR6. PLoS ONE, 2017, 12, e0184278.	2.5	30
39	Essential role for CCR6 in certain inflammatory diseases demonstrated using specific antagonist and knockin mice. JCI Insight, 2017, 2, .	5.0	24
40	The Role of Follicular Helper T Cell Molecules and Environmental Influences in Autoantibody Production and Progression to Inflammatory Arthritis in Mice. Arthritis and Rheumatology, 2016, 68, 1026-1038.	5.6	26
41	Dietary metabolites and the gut microbiota: an alternative approach to control inflammatory and autoimmune diseases. Clinical and Translational Immunology, 2016, 5, e82.	3.8	196
42	Avenues to autoimmune arthritis triggered by diverse remote inflammatory challenges. Journal of Autoimmunity, 2016, 73, 120-129.	6.5	3
43	Genetic Coding Variant in GPR65 Alters Lysosomal pH and Links Lysosomal Dysfunction with Colitis Risk. Immunity, 2016, 44, 1392-1405.	14.3	106
44	Dietary Fiber and Bacterial SCFA Enhance Oral Tolerance and Protect against Food Allergy through Diverse Cellular Pathways. Cell Reports, 2016, 15, 2809-2824.	6.4	489
45	G Protein-Coupled Receptor 43 Modulates Neutrophil Recruitment during Acute Inflammation. PLoS ONE, 2016, 11, e0163750.	2.5	48
46	An Acetate-Specific GPCR, FFAR2, Regulates Insulin Secretion. Molecular Endocrinology, 2015, 29, 1055-1066.	3.7	139
47	Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nature Communications, 2015, 6, 7320.	12.8	683
48	A Role for Gut Microbiota and the Metaboliteâ€ s ensing Receptor GPR43 in a Murine Model of Gout. Arthritis and Rheumatology, 2015, 67, 1646-1656.	5.6	192
49	Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nature Communications, 2015, 6, 6734.	12.8	983
50	GPR43 – A Prototypic Metabolite Sensor Linking Metabolic and Inflammatory Diseases. Trends in Endocrinology and Metabolism, 2015, 26, 511-512.	7.1	28
51	Treatment with anti-C5aR mAb leads to early-onset clinical and mechanistic effects in the murine delayed-type hypersensitivity arthritis model. Autoimmunity, 2015, 48, 460-470.	2.6	10
52	Realâ€ŧime interactive twoâ€photon photoconversion of recirculating lymphocytes for discontinuous cell tracking in live adult mice. Journal of Biophotonics, 2014, 7, 425-433.	2.3	46
53	<scp>BAFF</scp> regulates activation of selfâ€reactive <scp>T</scp> cells through <scp>B</scp> â€cell dependent mechanisms and mediates protection in <scp>NOD</scp> mice. European Journal of Immunology, 2014, 44, 983-993.	2.9	16
54	The Role of Short-Chain Fatty Acids in Health and Disease. Advances in Immunology, 2014, 121, 91-119.	2.2	1,587

#	Article	IF	CITATIONS
55	Adhesion Molecules and Chemoattractants in Autoimmunity. , 2014, , 297-308.		1
56	Diet, Metabolites, and "Western-Lifestyle―Inflammatory Diseases. Immunity, 2014, 40, 833-842.	14.3	736
57	Inflammation and Lymphopenia Trigger Autoimmunity by Suppression of IL-2–Controlled Regulatory T Cell and Increase of IL-21–Mediated Effector T Cell Expansion. Journal of Immunology, 2014, 193, 4845-4858.	0.8	17
58	Cyclophosphamide treatment induces rejection of established P815 mastocytoma by enhancing CD4 priming and intratumoral infiltration of P1E/Hâ€2K ^d â€specific CD8 ⁺ T cells. International Journal of Cancer, 2014, 134, 2841-2852.	5.1	9
59	CXCR3+CCR5+ T cells and autoimmune diseases: guilty as charged?. Journal of Clinical Investigation, 2014, 124, 3682-3684.	8.2	29
60	Circulating Precursor CCR7loPD-1hi CXCR5+ CD4+ T Cells Indicate Tfh Cell Activity and Promote Antibody Responses upon Antigen Reexposure. Immunity, 2013, 39, 770-781.	14.3	571
61	B-Cell Cross-Presentation of Autologous Antigen Precipitates Diabetes. Diabetes, 2012, 61, 2893-2905.	0.6	88
62	Protection against <i>Nippostrongylus brasiliensis</i> infection in mice is independent of GM SF. Immunology and Cell Biology, 2012, 90, 553-558.	2.3	12
63	Development and Uses for Monoclonal Antibodies to Chemoattractant Receptors. Current Immunology Reviews, 2012, 8, 149-153.	1.2	0
64	Chlamydia muridarum Lung Infection in Infants Alters Hematopoietic Cells to Promote Allergic Airway Disease in Mice. PLoS ONE, 2012, 7, e42588.	2.5	25
65	Microbial influences on epithelial integrity and immune function as a basis for inflammatory diseases. Immunological Reviews, 2012, 245, 164-176.	6.0	186
66	ILâ€21 enhances the potential of human γδT cells to provide Bâ€cell help. European Journal of Immunology, 2012, 42, 110-119.	2.9	90
67	Mice Deficient in GEM GTPase Show Abnormal Glucose Homeostasis Due to Defects in Beta-Cell Calcium Handling. PLoS ONE, 2012, 7, e39462.	2.5	14
68	CD200R1 Supports HSV-1 Viral Replication and Licenses Pro-Inflammatory Signaling Functions of TLR2. PLoS ONE, 2012, 7, e47740.	2.5	24
69	Specific expression of GPR56 by human cytotoxic lymphocytes. Journal of Leukocyte Biology, 2011, 90, 735-740.	3.3	104
70	Commensal flora and the regulation of inflammatory and autoimmune responses. Seminars in Immunology, 2011, 23, 139-145.	5.6	79
71	Diet, gut microbiota and immune responses. Nature Immunology, 2011, 12, 5-9.	14.5	1,050
72	Macrophage migration inhibitory factor regulates neutrophil chemotactic responses in inflammatory arthritis in mice. Arthritis and Rheumatism, 2011, 63, 960-970.	6.7	84

#	Article	IF	CITATIONS
73	CXCR5 Expressing Human Central Memory CD4 T Cells and Their Relevance for Humoral Immune Responses. Journal of Immunology, 2011, 186, 5556-5568.	0.8	296
74	The C5a Receptor (C5aR) C5L2 Is a Modulator of C5aR-mediated Signal Transduction. Journal of Biological Chemistry, 2010, 285, 7633-7644.	3.4	213
75	MEDI-563, a humanized anti–IL-5 receptor α mAb with enhanced antibody-dependent cell-mediated cytotoxicity function. Journal of Allergy and Clinical Immunology, 2010, 125, 1344-1353.e2.	2.9	481
76	Complexity in human immunodeficiency virus type 1 (HIV-1) co-receptor usage: roles of CCR3 and CCR5 in HIV-1 infection of monocyte-derived macrophages and brain microglia. Journal of General Virology, 2009, 90, 710-722.	2.9	20
77	Lineage specification and heterogeneity of T follicular helper cells. Current Opinion in Immunology, 2009, 21, 619-625.	5.5	56
78	The functional plasticity of T cell subsets. Nature Reviews Immunology, 2009, 9, 811-816.	22.7	241
79	Guidance of B Cells by the Orphan G Protein-Coupled Receptor EBI2 Shapes Humoral Immune Responses. Immunity, 2009, 31, 259-269.	14.3	248
80	The Transcriptional Repressor Bcl-6 Directs T Follicular Helper Cell Lineage Commitment. Immunity, 2009, 31, 457-468.	14.3	1,041
81	Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 2009, 461, 1282-1286.	27.8	2,534
82	A Fundamental Role for Interleukin-21 in the Generation of T Follicular Helper Cells. Immunity, 2008, 29, 127-137.	14.3	646
83	Functional roles for C5a receptors in sepsis. Nature Medicine, 2008, 14, 551-557.	30.7	364
84	Receptors for complement C5a. The importance of C5aR and the enigmatic role of C5L2. Immunology and Cell Biology, 2008, 86, 153-160.	2.3	118
85	T Follicular Helper (T _{FH}) Cells in Normal and Dysregulated Immune Responses. Annual Review of Immunology, 2008, 26, 741-766.	21.8	557
86	Moving targets: cell migration inhibitors as new anti-inflammatory therapies. Nature Immunology, 2008, 9, 988-998.	14.5	199
87	Granulocyte-Macrophage Colony-Stimulating Factor Is Required for Bronchial Eosinophilia in a Murine Model of Allergic Airway Inflammation. Journal of Immunology, 2008, 180, 2600-2607.	0.8	42
88	Polymorphism in the 5′ regulatory region of the B-lymphocyte activating factor gene is associated with the Ro/La autoantibody response and serum BAFF levels in primary Sjögren's syndrome. Rheumatology, 2008, 47, 1311-1316.	1.9	68
89	BAFF and MyD88 signals promote a lupuslike disease independent of T cells. Journal of Experimental Medicine, 2007, 204, 1959-1971.	8.5	332
90	Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14759-14764.	7.1	541

#	Article	IF	CITATIONS
91	Targeting dual-specificity phosphatases: manipulating MAP kinase signalling and immune responses. Nature Reviews Drug Discovery, 2007, 6, 391-403.	46.4	429
92	Immune cell transcriptome datasets reveal novel leukocyte subset–specific genes and genes associated with allergic processes. Journal of Allergy and Clinical Immunology, 2006, 118, 496-503.	2.9	46
93	Human C5aR knock-in mice facilitate the production and assessment of anti-inflammatory monoclonal antibodies. Nature Biotechnology, 2006, 24, 1279-1284.	17.5	56
94	Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nature Immunology, 2006, 7, 274-283.	14.5	228
95	Clues to asthma pathogenesis from microarray expression studies. , 2006, 109, 284-294.		35
96	Targeting BAFF: Immunomodulation for autoimmune diseases and lymphomas. , 2006, 112, 774-786.		60
97	A new role for CCR5 in innate immunity – binding to bacterial heat shock protein 70. European Journal of Immunology, 2006, 36, 2293-2295.	2.9	6
98	Regulation of Dendritic Cell Function and T Cell Priming by the Fatty Acid-Binding Protein aP2. Journal of Immunology, 2006, 177, 7794-7801.	0.8	73
99	The adipocyte fatty acid-binding protein aP2 is required in allergic airway inflammation. Journal of Clinical Investigation, 2006, 116, 2183-2192.	8.2	130
100	Adhesion Molecules and Chemoattractants in the Pathogenesis and Treatment of Autoimmune Diseases. , 2006, , 237-248.		0
101	Follicular B helper T cells in antibody responses and autoimmunity. Nature Reviews Immunology, 2005, 5, 853-865.	22.7	541
102	Contribution of stromal cells to the migration, function and retention of plasma cells in human spleen: potential roles of CXCL12, IL-6 and CD54. European Journal of Immunology, 2005, 35, 699-708.	2.9	63
103	Overlapping gene expression profiles in rheumatoid fibroblast-like synoviocytes induced by the proinflammatory cytokines interleukin-1 ? and tumor necrosis factor. Inflammation Research, 2005, 54, 10-16.	4.0	23
104	BAFF Augments Certain Th1-Associated Inflammatory Responses. Journal of Immunology, 2005, 174, 5537-5544.	0.8	124
105	Identification of T Cell-Restricted Genes, and Signatures for Different T Cell Responses, Using a Comprehensive Collection of Microarray Datasets. Journal of Immunology, 2005, 175, 7837-7847.	0.8	117
106	A fundamental bimodal role for neuropeptide Y1 receptor in the immune system. Journal of Experimental Medicine, 2005, 202, 1527-1538.	8.5	179
107	Gene Profiling in Atherosclerosis Reveals a Key Role for Small Inducible Cytokines. Circulation, 2005, 111, 3443-3452.	1.6	100
108	The BAFF/APRIL system: life beyond B lymphocytes. Molecular Immunology, 2005, 42, 763-772.	2.2	141

#	Article	IF	CITATIONS
109	CCL3L1 dose and HIV-1 susceptibility. Trends in Molecular Medicine, 2005, 11, 203-206.	6.7	11
110	BAFF-R, the major B cell–activating factor receptor, is expressed on most mature B cells and B-cell lymphoproliferative disorders. Human Pathology, 2005, 36, 1113-1119.	2.0	74
111	T Follicular Helper Cells Express a Distinctive Transcriptional Profile, Reflecting Their Role as Non-Th1/Th2 Effector Cells That Provide Help for B Cells. Journal of Immunology, 2004, 173, 68-78.	0.8	650
112	TNF Deficiency Fails to Protect BAFF Transgenic Mice against Autoimmunity and Reveals a Predisposition to B Cell Lymphoma. Journal of Immunology, 2004, 172, 812-822.	0.8	154
113	B Cell-Activating Factor Belonging to the TNF Family (BAFF)-R Is the Principal BAFF Receptor Facilitating BAFF Costimulation of Circulating T and B Cells. Journal of Immunology, 2004, 173, 807-817.	0.8	436
114	Chemoattractants and their receptors in homeostasis and inflammation. Current Opinion in Immunology, 2004, 16, 724-731.	5.5	98
115	Identification of circulating antigen-specific CD4+ T lymphocytes with a CCR5+, cytotoxic phenotype in an HIV-1 long-term nonprogressor and in CMV infection. Blood, 2004, 103, 2238-2247.	1.4	160
116	Levels of BAFF in Serum in Primary Biliary Cirrhosis and Autoimmune Diabetes. Autoimmunity, 2002, 35, 551-553.	2.6	27
117	The role of BAFF in B-cell maturation, T-cell activation and autoimmunity. Trends in Immunology, 2002, 23, 113-115.	6.8	77
118	New avenues for anti-inflammatory therapy. Nature Medicine, 2002, 8, 117-118.	30.7	11
119	Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren's syndrome. Journal of Clinical Investigation, 2002, 109, 59-68.	8.2	668
120	Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjögren's syndrome. Journal of Clinical Investigation, 2002, 109, 59-68.	8.2	383
121	T Cell Effector Subsets: Extending the Th1/Th2 Paradigm. Advances in Immunology, 2001, 78, 233-266.	2.2	47
122	Monocyte chemotactic protein-1, -2, and -3 are distinctively expressed in portal tracts and granulomata in primary biliary cirrhosis: implications for pathogenesis. Journal of Pathology, 2001, 193, 102-109.	4.5	94
123	Chemokines: immunology's high impact factors. Nature Immunology, 2001, 2, 95-101.	14.5	760
124	Gene Microarrays Reveal Extensive Differential Gene Expression in Both CD4+ and CD8+ Type 1 and Type 2 T Cells. Journal of Immunology, 2001, 167, 3057-3063.	0.8	123
125	IMMUNOLOGY: Memory T CellsLocal Heroes in the Struggle for Immunity. Science, 2001, 291, 2323-2324.	12.6	75
126	Monoclonal antibody screening of a phage-displayed random peptide library reveals mimotopes of chemokine receptor CCR5: implications for the tertiary structure of the receptor and for an N-terminal binding site for HIV-1 gp120. European Journal of Immunology, 2000, 30, 1162-1171.	2.9	25

#	Article	IF	CITATIONS
127	Follicular Homing T Helper (Th) Cells and the Th1/Th2 Paradigm. Journal of Experimental Medicine, 2000, 192, F31-F34.	8.5	66
128	Enhanced levels of functional HIV-1 co-receptors on human mucosal T cells demonstrated using intestinal biopsy tissue. Aids, 2000, 14, 1761-1765.	2.2	153
129	T-Cell Function and Migration — Two Sides of the Same Coin. New England Journal of Medicine, 2000, 343, 1020-1034.	27.0	1,387
130	The Role of Chemokine Receptors in Primary, Effector, and Memory Immune Responses. Annual Review of Immunology, 2000, 18, 593-620.	21.8	969
131	HIV-1 infectability of CD4+ lymphocytes with relation to β-chemokines and the CCR5 coreceptor. Immunology Letters, 1999, 66, 71-75.	2.5	27
132	Dual personality of memory T cells. Nature, 1999, 402, 3-4.	27.8	2
133	Dual personality of memory T cells. Nature, 1999, 401, 659-660.	27.8	70
134	Reduced HIV-1 Infectability of CD4+Lymphocytes from Exposed-Uninfected Individuals: Association with Low Expression of CCR5 and High Production of β-Chemokines. Virology, 1998, 244, 66-73.	2.4	153
135	The chemokine receptor CXCR3 mediates rapid and shear-resistant adhesion-induction of effector T lymphocytes by the chemokines IP10 and Mig. European Journal of Immunology, 1998, 28, 961-972.	2.9	215
136	Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. European Journal of Immunology, 1998, 28, 2760-2769.	2.9	1,020
137	Chemokines and chemokine receptors in T-cell priming and Th1/Th2-mediated responses. Trends in Immunology, 1998, 19, 568-574.	7.5	864
138	Mature Dendritic Cells Respond to SDF-1, but not to Several β-Chemokines. Immunobiology, 1998, 198, 490-500.	1.9	82
139	Immunohistochemical Study of the β-Chemokine Receptors CCR3 and CCR5 and Their Ligands in Normal and Alzheimer's Disease Brains. American Journal of Pathology, 1998, 153, 31-37.	3.8	274
140	Flexible Programs of Chemokine Receptor Expression on Human Polarized T Helper 1 and 2 Lymphocytes. Journal of Experimental Medicine, 1998, 187, 875-883.	8.5	1,488
141	The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions Journal of Clinical Investigation, 1998, 101, 746-754.	8.2	1,252
142	Amino-Terminal Substitutions in the CCR5 Coreceptor Impair gp120 Binding and Human Immunodeficiency Virus Type 1 Entry. Journal of Virology, 1998, 72, 279-285.	3.4	209
143	Genetic Subtype-Independent Inhibition of Human Immunodeficiency Virus Type 1 Replication by CC and CXC Chemokines. Journal of Virology, 1998, 72, 396-404.	3.4	128
144	Role of the β-Chemokine Receptors CCR3 and CCR5 in Human Immunodeficiency Virus Type 1 Infection of Monocytes and Microglia. Journal of Virology, 1998, 72, 3351-3361.	3.4	146

#	Article	IF	CITATIONS
145	CCR5 Levels and Expression Pattern Correlate with Infectability by Macrophage-tropic HIV-1, In Vitro. Journal of Experimental Medicine, 1997, 185, 1681-1692.	8.5	728
146	HIV-1 Entry and Macrophage Inflammatory Protein-1β-mediated Signaling Are Independent Functions of the Chemokine Receptor CCR5. Journal of Biological Chemistry, 1997, 272, 6854-6857.	3.4	186
147	Interaction of Chemokine Receptor CCR5 with its Ligands: Multiple Domains for HIV-1 gp120 Binding and a Single Domain for Chemokine Binding. Journal of Experimental Medicine, 1997, 186, 1373-1381.	8.5	371
148	The HIV coreceptors CXCR4 and CCR5 are differentially expressed and regulated on human T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 1925-1930.	7.1	1,054
149	Selective Expression of the Eotaxin Receptor CCR3 by Human T Helper 2 Cells. Science, 1997, 277, 2005-2007.	12.6	1,011
150	CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature, 1997, 385, 645-649.	27.8	945
151	Chemokines: What chemokine is that?. Current Biology, 1997, 7, R384-R386.	3.9	78
152	Enhanced expression of eotaxin and CCR3 mRNA and protein in atopic asthma. Association with airway hyperresponsiveness and predominant coâ€localization of eotaxin mRNA to bronchial epithelial and endothelial cells. European Journal of Immunology, 1997, 27, 3507-3516.	2.9	407
153	Complement C5a, TGF-β1, and MCP-1, in Sequence, Induce Migration of Monocytes Into Ischemic Canine Myocardium Within the First One to Five Hours After Reperfusion. Circulation, 1997, 95, 684-692.	1.6	188
154	Induction of Monocyte Chemoattractant Protein-1 in the Small Veins of the Ischemic and Reperfused Canine Myocardium. Circulation, 1997, 95, 693-700.	1.6	147
155	The β-Chemokine Receptors CCR3 and CCR5 Facilitate Infection by Primary HIV-1 Isolates. Cell, 1996, 85, 1135-1148.	28.9	2,432
156	Expression of monocyte chemoattractant proteinâ€1 and interleukinâ€8 receptors on subsets of T cells: correlation with transendothelial chemotactic potential. European Journal of Immunology, 1996, 26, 640-647.	2.9	160
157	Phenotype, and migration properties of three major subsets of tissue homing T cells in sheep. European Journal of Immunology, 1996, 26, 2433-2439.	2.9	81
158	Discrete Steps in Binding and Signaling of Interleukin-8 with Its Receptor. Journal of Biological Chemistry, 1996, 271, 31202-31209.	3.4	93
159	Expression of CD44 molecules and CD44 ligands during human thymic fetal development: expression of CD44 isoforms is developmentally regulated. International Immunology, 1995, 7, 277-286.	4.0	39
160	The Concept of Memory T Cells. , 1994, , 159-177.		2
161	Homing of naive, memory and effector lymphocytes. Current Opinion in Immunology, 1993, 5, 423-427.	5.5	275
162	Immunological Memory. Advances in Immunology, 1993, 53, 217-265.	2.2	174

#	Article	IF	CITATIONS
163	Expression of Human CD4 in Transgenic Mice Does Not Confer Sensitivity to Human Immunodeficiency Virus Infection. AIDS Research and Human Retroviruses, 1992, 8, 2063-2071.	1.1	56
164	Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. European Journal of Immunology, 1992, 22, 887-895.	2.9	245
165	Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. European Journal of Immunology, 1992, 22, 2205-2210.	2.9	146
166	Epitopes of the T19 lymphocyte surface antigen are extensively conserved in ruminants. Veterinary Immunology and Immunopathology, 1991, 27, 173-181.	1.2	12
167	Expression of the "T19―and "null cell―markers on γÎ⊤ cells of the sheep. Veterinary Immunology and Immunopathology, 1991, 27, 183-188.	1.2	14
168	Somatic generation of diversity in a mammalian primary lymphoid organ: The sheep ileal Peyer's patches. Cell, 1991, 64, 995-1005.	28.9	267
169	T-cell memory: the connection between function, phenotype and migration pathways. Trends in Immunology, 1991, 12, 189-192.	7.5	279
170	Prominence of $\hat{I}^{3}\hat{I}$ T cells in the ruminant immune system. Trends in Immunology, 1991, 12, 30-34.	7.5	427
171	Skin-seeking memory T cells. Nature, 1991, 349, 737-738.	27.8	40
172	A large proportion of bovine T cells express the γδT cell receptor and show a distinct tissue distribution and surface phenotype. International Immunology, 1989, 1, 540-545.	4.0	182
173	γ/δT cells express a unique surface molecule appearing late during thymic development. European Journal of Immunology, 1989, 19, 1477-1483.	2.9	209
174	Immunology and veterinary science. British Veterinary Journal, 1989, 145, 185-190.	0.5	6
175	Unusual expression of CD2 in sheep: implications for T cell interactions. European Journal of Immunology, 1988, 18, 1681-1688.	2.9	109
176	Three distinct subpopulations of sheep T lymphocytes. European Journal of Immunology, 1986, 16, 19-25.	2.9	187
177	The L3T4 antigen in mouse and the sheep equivalent are immunoglobulin-like. Immunogenetics, 1986, 23, 129-132.	2.4	17