David Af Gillespie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428990/publications.pdf

Version: 2024-02-01

84 papers 5,908 citations

33 h-index 75 g-index

85 all docs 85 docs citations

85 times ranked 9456 citing authors

#	Article	IF	CITATIONS
1	Changing sexual behaviours amongst MSM during the COVID-19 restrictions in Wales: a mixed methods study. BMC Public Health, 2022, 22, 396.	2.9	5
2	When more is less: heritable gainâ€ofâ€function chk1 mutations impair human fertility. FEBS Journal, 2022, , .	4.7	3
3	Experiences of men who have sex with men when initiating, implementing and persisting with HIV preâ€exposure prophylaxis. Health Expectations, 2022, 25, 1332-1341.	2.6	5
4	Early impact of COVID-19 social distancing measures on reported sexual behaviour of HIV pre-exposure prophylaxis users in Wales. Sexually Transmitted Infections, 2021, 97, 85-87.	1.9	23
5	The Nucleocapsid protein triggers the main humoral immune response in COVID-19 patients. Biochemical and Biophysical Research Communications, 2021, 543, 45-49.	2.1	68
6	Associations with antibiotic prescribing for acute exacerbation of COPD in primary care: secondary analysis of a randomised controlled trial. British Journal of General Practice, 2021, 71, e266-e272.	1.4	6
7	Delayed antibiotic prescribing for respiratory tract infections: individual patient data meta-analysis. BMJ, The, 2021, 373, n808.	6.0	42
8	DNA damage response proteins in canine cancer as potential research targets in comparative oncology. Veterinary and Comparative Oncology, 2021, , .	1.8	6
9	C-reactive protein-guided antibiotic prescribing for COPD exacerbations: a qualitative evaluation. British Journal of General Practice, 2020, 70, e505-e513.	1.4	5
10	Claspin – checkpoint adaptor and <scp>DNA</scp> replication factor. FEBS Journal, 2019, 286, 441-455.	4.7	65
11	AKT overactivation can suppress DNA repair via p70S6 kinase-dependent downregulation of MRE11. Oncogene, 2018, 37, 427-438.	5. 9	34
12	Chk1 KA1 domain auto-phosphorylation stimulates biological activity and is linked to rapid proteasomal degradation. Scientific Reports, 2018, 8, 17536.	3.3	6
13	Targeting CHK1 for Cancer Therapy: Rationale, Progress and Prospects. Cancer Drug Discovery and Development, 2018, , 209-240.	0.4	О
14	PERK inhibits DNA replication during the Unfolded Protein Response via Claspin and Chk1. Oncogene, 2017, 36, 678-686.	5.9	40
15			
	Autophagy is critically required for DNA repair by homologous recombination. Molecular and Cellular Oncology, 2016, 3, e1030538.	0.7	14
16		3.3	14
	Cellular Oncology, 2016, 3, e1030538. KA1-targeted regulatory domain mutations activate Chk1 in the absence of DNA damage. Scientific		

#	Article	IF	Citations
19	Antibiotic prescribing and associated diarrhoea: a prospective cohort study of care home residents. Age and Ageing, 2015, 44, 853-860.	1.6	32
20	PARP inhibitor olaparib increases the oncolytic activity of dl922â€947 in inÂvitro and inÂvivo model of anaplastic thyroid carcinoma. Molecular Oncology, 2015, 9, 78-92.	4.6	32
21	Electronic Monitoring of Medication Adherence in a 1-year Clinical Study of 2 Dosing Regimens of Mesalazine for Adults in Remission with Ulcerative Colitis. Inflammatory Bowel Diseases, 2014, 20, 82-91.	1.9	18
22	Cancer therapy. Cell Cycle, 2014, 13, 2330-2333.	2.6	15
23	Fascin 1 is transiently expressed in mouse melanoblasts during development and promotes migration and proliferation. Development (Cambridge), 2013, 140, 2203-2211.	2.5	45
24	Chk1 is essential for the development of murine epidermal melanocytes. Pigment Cell and Melanoma Research, 2013, 26, 580-585.	3. 3	8
25	lonizing radiation enhances dl922–947-mediated cell death of anaplastic thyroid carcinoma cells. Endocrine-Related Cancer, 2013, 20, 633-647.	3.1	20
26	Fascin 1 is transiently expressed in mouse melanoblasts during development and promotes migration and proliferation. Journal of Cell Science, 2013, 126, e1-e1.	2.0	0
27	Short-circuiting the cell cycle for cancer therapy. Cell Cycle, 2012, 11, 2777-2777.	2.6	0
28	Chk1 is essential for chemical carcinogen-induced mouse skin tumorigenesis. Oncogene, 2012, 31, 1366-1375.	5.9	39
29	Cdk-mediated phosphorylation of Chk1 is required for efficient activation and full checkpoint proficiency in response to DNA damage. Oncogene, 2012, 31, 1086-1094.	5. 9	30
30	Akt: A Double-Edged Sword in Cell Proliferation and Genome Stability. Journal of Oncology, 2012, 2012, 1-15.	1.3	224
31	ATR–Chk1 signaling pathway and homologous recombinational repair protect cells from 5-fluorouracil cytotoxicity. DNA Repair, 2012, 11, 247-258.	2.8	21
32	Cdk phosphorylation of Chk1 regulates efficient Chk1 activation and multiple checkpoint proficiency. Biochemical and Biophysical Research Communications, 2011, 413, 465-470.	2.1	7
33	Phosphorylation at serine 331 is required for Aurora B activation. Journal of Cell Biology, 2011, 195, 449-466.	5. 2	75
34	Vertebrate cells genetically deficient for Cdc14A or Cdc14B retain DNA damage checkpoint proficiency but are impaired in DNA repair. Journal of Cell Biology, 2010, 189, 631-639.	5 . 2	99
35	Akt/PKB suppresses DNA damage processing and checkpoint activation in late G2. Journal of Cell Biology, 2010, 190, 297-305.	5. 2	66
36	The ATM–Chk2 and ATR–Chk1 Pathways in DNA Damage Signaling and Cancer. Advances in Cancer Research, 2010, 108, 73-112.	5.0	980

#	Article	IF	Citations
37	Chk1 C-terminal regulatory phosphorylation mediates checkpoint activation by de-repression of Chk1 catalytic activity. Oncogene, 2009, 28, 2314-2323.	5.9	68
38	Mutant p53 Drives Invasion by Promoting Integrin Recycling. Cell, 2009, 139, 1327-1341.	28.9	694
39	Chk2 is required for optimal mitotic delay in response to irradiation-induced DNA damage incurred in G2 phase. Oncogene, 2008, 27, 896-906.	5.9	49
40	Claspin is phosphorylated in the Chk1-binding domain by a kinase distinct from Chk1. Biochemical and Biophysical Research Communications, 2008, 369, 973-976.	2.1	11
41	A Conserved Proliferating Cell Nuclear Antigen-interacting Protein Sequence in Chk1 Is Required for Checkpoint Function. Journal of Biological Chemistry, 2008, 283, 17250-17259.	3.4	27
42	c-Jun Supports Ribosomal RNA Processing and Nucleolar Localization of RNA Helicase DDX21. Journal of Biological Chemistry, 2008, 283, 7046-7053.	3 . 4	46
43	DNA Mismatch Repair and Chk1-Dependent Centrosome Amplification in Response to DNA Alkylation Damage. Cell Cycle, 2007, 6, 982-992.	2.6	21
44	Chk1 is required for G2/M Checkpoint Response Induced by the Catalytic Topoisomerase II Inhibitor ICRF-193. Cell Cycle, 2007, 6, 1265-1267.	2.6	30
45	Exercising Restraints: Role of Chk1 in Regulating the Onset and Progression of Unperturbed Mitosis in Vertebrate Cells. Cell Cycle, 2007, 6, 810-813.	2.6	24
46	Cells Deficient in the FANC/BRCA Pathway Are Hypersensitive to Plasma Levels of Formaldehyde. Cancer Research, 2007, 67, 11117-11122.	0.9	154
47	Chk1 Is Required for Spindle Checkpoint Function. Developmental Cell, 2007, 12, 247-260.	7.0	227
48	Phosphorylation of HuR by Chk2 Regulates SIRT1 Expression. Molecular Cell, 2007, 25, 543-557.	9.7	491
49	Chk1 regulates the density of active replication origins during the vertebrate S phase. EMBO Journal, 2007, 26, 2719-2731.	7.8	229
50	DNA damage induces Chk1â€dependent centrosome amplification. EMBO Reports, 2007, 8, 603-609.	4.5	108
51	Chk1-dependent slowing of S-phase progression protects DT40 B-lymphoma cells against killing by the nucleoside analogue 5-fluorouracil. Oncogene, 2006, 25, 5359-5369.	5.9	45
52	Chk1 Requirement for High Global Rates of Replication Fork Progression during Normal Vertebrate S Phase. Molecular and Cellular Biology, 2006, 26, 3319-3326.	2.3	166
53	Chk1-Dependent S-M Checkpoint Delay in Vertebrate Cells Is Linked to Maintenance of Viable Replication Structures. Molecular and Cellular Biology, 2005, 25, 563-574.	2.3	89
54	Viral mutations enhance the Max binding properties of the vMyc b-HLH-LZ domain. Nucleic Acids Research, 2005, 33, 5235-5242.	14.5	2

#	Article	IF	CITATIONS
55	Invasion of Normal Human Fibroblasts Induced by v-Fosls Independent of Proliferation, Immortalization, and theTumor Suppressors p16 INK4a andp53. Molecular and Cellular Biology, 2004, 24, 1540-1559.	2.3	33
56	c-Jun-Deficient Cells Undergo Premature Senescence as a Result of Spontaneous DNA Damage Accumulation. Molecular and Cellular Biology, 2004, 24, 9006-9018.	2.3	57
57	Microarray analysis identifies Autotaxin, a tumour cell motility and angiogenic factor with lysophospholipase D activity, as a specific target of cell transformation by v-Jun. Oncogene, 2004, 23, 2357-2366.	5.9	64
58	Sab (SH3BP5), a novel mitochondria-localized JNK-interacting protein. Biochemical Society Transactions, 2004, 32, 1075-1077.	3 . 4	32
59	Chk1-deficient tumour cells are viable but exhibit multiple checkpoint and survival defects. EMBO Journal, 2003, 22, 713-723.	7.8	213
60	Estrogen receptor activation function 2 (AF-2) is essential for hormone-dependent transactivation and cell transformation induced by a v-Jun DNA binding domain-estrogen receptor chimera. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 2003, 1628, 147-155.	2.4	4
61	Interactions of the DNA mismatch repair proteins MLH1 and MSH2 with c-MYC and MAX. Oncogene, 2003, 22, 819-825.	5.9	31
62	v-Jun stimulates both cdk2 kinase activity and G1/S progression via transcriptional repression of p21 CIP1. Oncogene, 2003, 22, 2383-2395.	5.9	11
63	The Secret Life of Histones. Cell, 2003, 114, 655-656.	28.9	14
64	Lethal Errors in Checkpoint Control: Life without Chk1. Cell Cycle, 2003, 2, 14-16.	2.6	8
65	A new c-Jun N-terminal kinase (JNK)-interacting protein, Sab (SH3BP5), associates with mitochondria. Biochemical Journal, 2002, 367, 577-585.	3.7	87
66	Molecular mechanism and biological functions of c-Jun N-terminal kinase signalling via the c-Jun transcription factor. Cellular Signalling, 2002, 14, 585-593.	3.6	180
67	Cell transformation by v-Jun deactivates ERK MAP kinase signalling. Oncogene, 2002, 21, 6540-6548.	5.9	16
68	High levels of phosphorylated c-Jun, Fra-1, Fra-2 and ATF-2 proteins correlate with malignant phenotypes in the multistage mouse skin carcinogenesis model. Oncogene, 2000, 19, 4011-4021.	5.9	86
69	v-Jun sensitizes cells to apoptosis by a mechanism involving mitochondrial cytochrome C release. Oncogene, 2000, 19, 5906-5918.	5.9	8
70	Transient deactivation of ERK signalling is sufficient for stable entry into GO in primary avian fibroblasts. Current Biology, 2000, 10, 1119-1122.	3.9	25
71	v-Jun Overrides the Mitogen Dependence of S-Phase Entry by Deregulating Retinoblastoma Protein Phosphorylation and E2F-Pocket Protein Interactions as a Consequence of Enhanced Cyclin E-cdk2 Catalytic Activity. Molecular and Cellular Biology, 2000, 20, 2529-2542.	2.3	26
72	Inhibition of Adipocyte Differentiation by cMyc Is Not Accompanied by Alterations in Cell Cycle Control. Biochemical and Biophysical Research Communications, 2000, 269, 438-443.	2.1	6

#	Article	IF	CITATIONS
73	Inhibition of the Terminal Stages of Adipocyte Differentiation by cMyc. Experimental Cell Research, 2000, 254, 91-98.	2.6	27
74	The BRCA2 transactivation domain does not interact with JNK., 1999, 25, 407-409.		6
75	An oncogenic mutation uncouples the v-Jun oncoprotein from positive regulation by the SAPK/JNK pathway in vivo. Current Biology, 1998 , 8 , $117-120$.	3.9	32
76	Analysis of the Interaction between c-Jun and c-Jun N-terminal Kinase in Vivo. Journal of Biological Chemistry, 1998, 273, 33429-33435.	3.4	36
77	Insulin-stimulated expression of c-fos, fra1 and c-jun accompanies the activation of the activator protein-1 (AP-1) transcriptional complex. Biochemical Journal, 1998, 335, 19-26.	3.7	41
78	Pruritus and cholestasis: Therapeutic options. Journal of Gastroenterology and Hepatology (Australia), 1993, 8, 168-173.	2.8	28
79	Detection of a Myc-associated protein by chemical cross-linking Molecular and Cellular Biology, 1989, 9, 865-868.	2.3	9
80	Rearrangements of viral and cellular DNA are often associated with expression of Rous sarcoma virus in rat cells. Cell, 1985, 41, 279-287.	28.9	25
81	Analysis of the variations in proviral cytosine methylation that accompany transformation and morphological reversion in a line of Rous sarcoma virus-infected Rat-1 Cells. Nucleic Acids Research, 1984, 12, 5193-5210.	14.5	27
82	The changes in proviral chromatin that accompany morphological variation in avian sarcoma virus-infected rat cells. Nucleic Acids Research, 1982, 10, 3967-3980.	14.5	35
83	Properties of Middle-Repeat Sequences in Nuclear Deoxyribonucleic Acid from Baby-Hamster Kidney Cells (BHK-21/C13). Biochemical Society Transactions, 1979, 7, 663-665.	3.4	0
84	Microbubbles in replicating nuclear deoxyribonucleic acid from <i>Physarum polycephalum</i> Biochemical Journal, 1979, 183, 477-480.	3.7	5