
Valery V Grinevich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evoked Axonal Oxytocin Release in the Central Amygdala Attenuates Fear Response. Neuron, 2012, 73, 553-566.	8.1	880
2	A New Population of Parvocellular Oxytocin Neurons Controlling Magnocellular Neuron Activity and Inflammatory Pain Processing. Neuron, 2016, 89, 1291-1304.	8.1	314
3	Oxytocin Enhances Social Recognition by Modulating Cortical Control of Early Olfactory Processing. Neuron, 2016, 90, 609-621.	8.1	272
4	Assembling the Puzzle: Pathways of Oxytocin Signaling in the Brain. Biological Psychiatry, 2016, 79, 155-164.	1.3	236
5	Oxytocin Facilitates the Extinction of Conditioned Fear in Humans. Biological Psychiatry, 2015, 78, 194-202.	1.3	210
6	Independent hypothalamic circuits for social and predator fear. Nature Neuroscience, 2013, 16, 1731-1733.	14.8	198
7	Evolution of oxytocin pathways in the brain of vertebrates. Frontiers in Behavioral Neuroscience, 2014, 8, 31.	2.0	196
8	Prefrontal cortical control of a brainstem social behavior circuit. Nature Neuroscience, 2017, 20, 260-270.	14.8	162
9	Social touch promotes interfemale communication via activation of parvocellular oxytocin neurons. Nature Neuroscience, 2020, 23, 1125-1137.	14.8	161
10	Oxytocin Signaling in the Lateral Septum Prevents Social Fear during Lactation. Current Biology, 2018, 28, 1066-1078.e6.	3.9	140
11	Oxytocin Signaling in the Central Amygdala Modulates Emotion Discrimination in Mice. Current Biology, 2019, 29, 1938-1953.e6.	3.9	125
12	Monosynaptic Pathway from Rat Vibrissa Motor Cortex to Facial Motor Neurons Revealed by Lentivirus-Based Axonal Tracing. Journal of Neuroscience, 2005, 25, 8250-8258.	3.6	117
13	Oxytocin in the nucleus accumbens shell reverses CRFR2-evoked passive stress-coping after partner loss in monogamous male prairie voles. Psychoneuroendocrinology, 2016, 64, 66-78.	2.7	116
14	Brain oxytocin: how puzzle stones from animal studies translate into psychiatry. Molecular Psychiatry, 2021, 26, 265-279.	7.9	115
15	Interplay between Oxytocin and Sensory Systems in the Orchestration of Socio-Emotional Behaviors. Neuron, 2018, 99, 887-904.	8.1	113
16	Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety. Nature Neuroscience, 2018, 21, 803-807.	14.8	106
17	The Action Radius of Oxytocin Release in the Mammalian CNS: From Single Vesicles to Behavior. Trends in Pharmacological Sciences, 2017, 38, 982-991.	8.7	101
18	A Fear Memory Engram and Its Plasticity in the Hypothalamic Oxytocin System. Neuron, 2019, 103, 133-146 e8	8.1	97

#	Article	IF	CITATIONS
19	Oxytocin Facilitates Pavlovian Fear Learning in Males. Neuropsychopharmacology, 2016, 41, 932-939.	5.4	92
20	Astrocytes mediate the effect of oxytocin in the central amygdala on neuronal activity and affective states in rodents. Nature Neuroscience, 2021, 24, 529-541.	14.8	88
21	Acute endotoxemia in rats induces down-regulation of V2 vasopressin receptors and aquaporin-2 content in the kidney medulla. Kidney International, 2004, 65, 54-62.	5.2	86
22	Oxytocin Reduces Alcohol Cue-Reactivity in Alcohol-Dependent Rats and Humans. Neuropsychopharmacology, 2018, 43, 1235-1246.	5.4	85
23	Diversity of oxytocin neurones: Beyond magno―and parvocellular cell types?. Journal of Neuroendocrinology, 2018, 30, e12549.	2.6	83
24	Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on corticotropin-releasing hormone (CRH) gene expression in the rat hypothalamic paraventricular nucleus. Brain Research, 1997, 773, 190-196.	2.2	82
25	Ontogenesis of oxytocin pathways in the mammalian brain: late maturation and psychosocial disorders. Frontiers in Neuroanatomy, 2014, 8, 164.	1.7	81
26	Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26406-26413.	7.1	78
27	Hypothalamic miR-103 Protects from Hyperphagic Obesity in Mice. Journal of Neuroscience, 2014, 34, 10659-10674.	3.6	76
28	Î ³ -Protocadherins, Presenilin-mediated Release of C-terminal Fragment Promotes Locus Expression. Journal of Biological Chemistry, 2005, 280, 15888-15897.	3.4	74
29	Rapid erasure of hippocampal memory following inhibition of dentate gyrus granule cells. Nature Communications, 2016, 7, 10923.	12.8	63
30	Oxytocin Signaling in Pain: Cellular, Circuit, System, and Behavioral Levels. Current Topics in Behavioral Neurosciences, 2017, 35, 193-211.	1.7	62
31	Oxytocin and vasopressin within the ventral and dorsal lateral septum modulate aggression in female rats. Nature Communications, 2021, 12, 2900.	12.8	59
32	Impaired Reproductive Behavior by Lack of GluR-B Containing AMPA Receptors But Not of NMDA Receptors in Hypothalamic and Septal Neurons. Molecular Endocrinology, 2006, 20, 219-231.	3.7	55
33	Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone and somatostatin gene expression in the rat brain. Molecular Brain Research, 1996, 41, 157-162.	2.3	54
34	Distinct dynamics of social motivation drive differential social behavior in laboratory rat and mouse strains. Nature Communications, 2020, 11, 5908.	12.8	52
35	Lifespan oxytocin signaling: Maturation, flexibility, and stability in newborn, adolescent, and aged brain. Developmental Neurobiology, 2017, 77, 158-168.	3.0	47
36	Neuropeptide S Activates Paraventricular Oxytocin Neurons to Induce Anxiolysis. Journal of Neuroscience, 2017, 37, 12214-12225.	3.6	45

#	Article	IF	CITATIONS
37	Fluorescent Arc/Arg3.1 indicator mice: A versatile tool to study brain activity changes in vitro and in vivo. Journal of Neuroscience Methods, 2009, 184, 25-36.	2.5	43
38	The multiple faces of the oxytocin and vasopressin systems in the brain. Journal of Neuroendocrinology, 2021, 33, e13004.	2.6	41
39	Oxytocin normalizes altered circuit connectivity for social rescue of the Cntnap2 knockout mouse. Neuron, 2022, 110, 795-808.e6.	8.1	41
40	Oxytocin as a Modulator of Synaptic Plasticity: Implications for Neurodevelopmental Disorders. Frontiers in Synaptic Neuroscience, 2018, 10, 17.	2.5	39
41	Chemogenetic activation of oxytocin neurons: Temporal dynamics, hormonal release, and behavioral consequences. Psychoneuroendocrinology, 2019, 106, 77-84.	2.7	39
42	Vasopressin casts light on the suprachiasmatic nucleus. Journal of Physiology, 2017, 595, 3497-3514.	2.9	38
43	Oxytocin Signaling in the Early Life of Mammals: Link to Neurodevelopmental Disorders Associated with ASD. Current Topics in Behavioral Neurosciences, 2017, 35, 239-268.	1.7	30
44	Deciphering the Contributions of CRH Receptors in the Brain and Pituitary to Stress-Induced Inhibition of the Reproductive Axis. Frontiers in Molecular Neuroscience, 2018, 11, 305.	2.9	28
45	The oxytocin system of mice and men—Similarities and discrepancies of oxytocinergic modulation in rodents and primates. Peptides, 2018, 109, 1-8.	2.4	24
46	Cellular mechanisms of motor control in the vibrissal system. Pflugers Archiv European Journal of Physiology, 2006, 453, 269-281.	2.8	21
47	Oxytocin Mobilizes Midbrain Dopamine toward Sociality. Neuron, 2017, 95, 235-237.	8.1	20
48	Oxytocin for learning calm and safety. International Journal of Psychophysiology, 2019, 136, 5-14.	1.0	20
49	Hypothalamic Pituitary Adrenal Axis and Hypothalamic–Neurohypophyseal Responsiveness in Water-Deprived Rats. Experimental Neurology, 2001, 171, 329-341.	4.1	19
50	Hypothalamic Pituitary Adrenal Axis and Immune Responses to Endotoxin in Rats with Chronic Adjuvant-Induced Arthritis. Experimental Neurology, 2002, 178, 112-123.	4.1	19
51	Automated axon length quantification for populations of labelled neurons. Journal of Neuroscience Methods, 2008, 169, 43-54.	2.5	19
52	Oxytocin: pain relief in skin. Pain, 2017, 158, 2061-2063.	4.2	18
53	Oxytocin Effects on Pain Perception and Pain Anticipation. Journal of Pain, 2019, 20, 1187-1198.	1.4	17
54	Electrotonic Coupling in the Pituitary Supports the Hypothalamic-Pituitary-Gonadal Axis in a Sex Specific Manner. Frontiers in Molecular Neuroscience, 2016, 9, 65.	2.9	14

#	Article	IF	CITATIONS
55	A novel mechanism of autophagy-associated cell death of vasopressin neurons in familial neurohypophysial diabetes insipidus. Cell and Tissue Research, 2019, 375, 259-266.	2.9	14
56	Endoplasmic reticulum chaperone BiP/GRP78 knockdown leads to autophagy and cell death of arginine vasopressin neurons in mice. Scientific Reports, 2020, 10, 19730.	3.3	14
57	Oxytocinergic Feedback Circuitries: An Anatomical Basis for Neuromodulation of Social Behaviors. Frontiers in Neural Circuits, 2021, 15, 688234.	2.8	14
58	Imaging neuropeptide effects on human brain function. Cell and Tissue Research, 2019, 375, 279-286.	2.9	13
59	Identification of peripheral oxytocinâ€expressing cells using systemically applied cellâ€ŧype specific adenoâ€associated viral vector. Journal of Neuroendocrinology, 2021, 33, e12970.	2.6	13
60	Differential effects of oxytocin on mouse hippocampal oscillations <i>inÂvitro</i> . European Journal of Neuroscience, 2016, 44, 2885-2898.	2.6	12
61	Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2021, 180, 25-44.	1.8	12
62	Oxytocin blood concentrations in alcohol use disorder: A cross-sectional, longitudinal, and sex-separated study. European Neuropsychopharmacology, 2021, 51, 55-67.	0.7	11
63	Identification and three-dimensional reconstruction of oxytocin receptor expressing astrocytes in the rat and mouse brain. STAR Protocols, 2022, 3, 101160.	1.2	11
64	Editorial: Development of the hypothalamus. Frontiers in Neuroanatomy, 2015, 9, 83.	1.7	10
65	Viral vectors for opto-electrode recording and photometry-based imaging of oxytocin neurons in anesthetized and socially interacting rats. STAR Protocols, 2022, 3, 101032.	1.2	10
66	Sleep Deprivation Related Changes of Plasma Oxytocin in Males and Female Contraceptive Users Depend on Sex and Correlate Differentially With Anxiety and Pain Hypersensitivity. Frontiers in Behavioral Neuroscience, 2018, 12, 161.	2.0	9
67	Pain-modulating effects of oxytocin in patients with chronic low back pain. Neuropharmacology, 2020, 171, 108105.	4.1	9
68	Fear, love, and the origins of canid domestication: An oxytocin hypothesis. Comprehensive Psychoneuroendocrinology, 2022, 9, 100100.	1.7	9
69	Efficiency of cell-type specific and generic promoters in transducing oxytocin neurons and monitoring their neural activity during lactation. Scientific Reports, 2021, 11, 22541.	3.3	8
70	Altered <scp>PVNâ€ŧo A2</scp> hippocampal oxytocin pathway and reduced number of oxytocinâ€ŧeceptor expressing astrocytes in heart failure rats. Journal of Neuroendocrinology, 2022, 34, .	2.6	8
71	Effects of optogenetic stimulation of vasopressinergic retinal afferents on suprachiasmatic neurones. Journal of Neuroendocrinology, 2019, 31, e12806.	2.6	7
72	Viral Vectors for Optogenetics of Hypothalamic Neuropeptides. Neuromethods, 2014, , 311-329.	0.3	6

#	Article	IF	CITATIONS
73	Editorial: The Oxytocin System in Fear, Stress, Anguish, and Pain. Frontiers in Endocrinology, 2021, 12, 737953.	3.5	5
74	Transcription factor Creb3l1 maintains proteostasis in neuroendocrine cells. Molecular Metabolism, 2022, 63, 101542.	6.5	5
75	Regulatory peptides and systems biology: A new era of translational and reverseâ€ŧranslational neuroendocrinology. Journal of Neuroendocrinology, 2020, 32, e12844.	2.6	4
76	Territorial blueprint in the hippocampal system. Trends in Cognitive Sciences, 2021, 25, 831-842.	7.8	4
77	Distinct Types of Feeding Related Neurons in Mouse Hypothalamus. Frontiers in Behavioral Neuroscience, 2016, 10, 91.	2.0	3
78	106. The Role of Oxytocin Neurons in the Bed Nucleus of the Stria Terminalis in Mediating Social Withdrawal. Biological Psychiatry, 2017, 81, S44-S45.	1.3	3
79	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2
80	Calcium imaging and BAPTA loading of amygdala astrocytes in mouse brain slices. STAR Protocols, 2022, 3, 101159.	1.2	2
81	Towards new frontiers in neuroendocrinology: A tribute to Peter H. Seeburg. Cell and Tissue Research, 2019, 375, 1-2.	2.9	1
82	Optogenetics for Neurohormones and Neuropeptides: Focus on Oxytocin. , 0, , 196-205.		0
83	Advances in neurohypophysial hormones research. Journal of Neuroendocrinology, 2020, 32, e12853.	2.6	0