
Kathy E Schwinn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5428645/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Conserved Network of Transcriptional Activators and Repressors Regulates Anthocyanin Pigmentation in Eudicots. Plant Cell, 2014, 26, 962-980.	6.6	610
2	A Small Family of MYB-Regulatory Genes Controls Floral Pigmentation Intensity and Patterning in the Genus Antirrhinum. Plant Cell, 2006, 18, 831-851.	6.6	513
3	Members of an R2R3â€MYB transcription factor family in <i>Petunia</i> are developmentally and environmentally regulated to control complex floral and vegetative pigmentation patterning. Plant Journal, 2011, 65, 771-784.	5.7	401
4	From landing lights to mimicry: the molecular regulation of flower colouration and mechanisms for pigmentation patterning. Functional Plant Biology, 2012, 39, 619.	2.1	263
5	Title is missing!. Euphytica, 2003, 131, 259-268.	1.2	190
6	The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of <i>Antirrhinum</i> . New Phytologist, 2011, 189, 602-615.	7.3	167
7	A manually annotated Actinidia chinensis var. chinensis (kiwifruit) genome highlights the challenges associated with draft genomes and gene prediction in plants. BMC Genomics, 2018, 19, 257.	2.8	167
8	Identification of Mendel's White Flower Character. PLoS ONE, 2010, 5, e13230.	2.5	135
9	The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. Frontiers in Plant Science, 2020, 11, 7.	3.6	126
10	Transcriptional regulation of secondary metabolism. Functional Plant Biology, 2003, 30, 913.	2.1	115
11	Genetic analysis of the liverwort <i>Marchantia polymorpha</i> reveals that R2R3 <scp>MYB</scp> activation of flavonoid production in response to abiotic stress is an ancient character in land plants. New Phytologist, 2018, 218, 554-566.	7.3	98
12	UVR8â€mediated induction of flavonoid biosynthesis for UVB tolerance is conserved between the liverwort <i>Marchantia polymorpha</i> and flowering plants. Plant Journal, 2018, 96, 503-517.	5.7	93
13	The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis. Frontiers in Plant Science, 2016, 7, 1865.	3.6	91
14	Methods for transient assay of gene function in floral tissues. Plant Methods, 2007, 3, 1.	4.3	86
15	Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biology, 2012, 12, 34.	3.6	84
16	Isolation and antisense suppression of flavonoid 3', 5'-hydroxylase modifies flower pigments and colour in cyclamen. BMC Plant Biology, 2010, 10, 107.	3.6	71
17	Auronidins are a previously unreported class of flavonoid pigments that challenges when anthocyanin biosynthesis evolved in plants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 20232-20239.	7.1	63
18	Gene regulation networks generate diverse pigmentation patterns in plants. Plant Signaling and Behavior, 2014, 9, e29526.	2.4	58

KATHY E SCHWINN

#	Article	IF	CITATIONS
19	Flavonoid biosynthesis in flower petals of five lines of lisianthus (Eustoma grandiflorum Grise.). Plant Science, 1993, 95, 67-77.	3.6	57
20	Title is missing!. Molecular Breeding, 1998, 4, 59-66.	2.1	57
21	Floral flavonoids and the potential for pelargonidin biosynthesis in commercial chrysanthemum cultivars. Phytochemistry, 1993, 35, 145-150.	2.9	56
22	MYB and bHLH transcription factor transgenes increase anthocyanin pigmentation in petunia and lisianthus plants, and the petunia phenotypes are strongly enhanced under field conditions. Frontiers in Plant Science, 2014, 5, 603.	3.6	56
23	MYBA From Blueberry (Vaccinium Section Cyanococcus) Is a Subgroup 6 Type R2R3MYB Transcription Factor That Activates Anthocyanin Production. Frontiers in Plant Science, 2018, 9, 1300.	3.6	55
24	Temporal and spatial expression of flavonoid biosynthetic genes in flowers of Anthurium andraeanum. Physiologia Plantarum, 2004, 122, 297-304.	5.2	49
25	Expression of an Antirrhinum majus UDP-glucose:flavonoid-3-O-glucosyltransferase transgene alters flavonoid glycosylation and acylation in lisianthus (Eustoma grandiflorum Grise.). Plant Science, 1997, 125, 53-61.	3.6	45
26	Betalain induction by <scp>l</scp> â€ <scp>DOPA</scp> application confers photoprotection to salineâ€exposed leaves of <i><scp>D</scp>isphyma australe</i> . New Phytologist, 2015, 207, 1075-1083.	7.3	41
27	Temporal and spatial regulation of anthocyanin biosynthesis provide diverse flower colour intensities and patterning in Cymbidium orchid. Planta, 2014, 240, 983-1002.	3.2	39
28	The red flesh of kiwifruit is differentially controlled by specific activation–repression systems. New Phytologist, 2022, 235, 630-645.	7.3	37
29	Activation of anthocyanin synthesis in Cymbidium orchids: variability between known regulators. Plant Cell, Tissue and Organ Culture, 2010, 100, 355-360.	2.3	36
30	Characterisation of betalain biosynthesis in Parakeelya flowers identifies the key biosynthetic gene DOD as belonging to an expanded LigB gene family that is conserved in betalain-producing species. Frontiers in Plant Science, 2015, 6, 499.	3.6	33
31	A whole genome assembly of <i>Leptospermum scoparium</i> (Myrtaceae) for mÄnuka research. New Zealand Journal of Crop and Horticultural Science, 2019, 47, 233-260.	1.3	31
32	Discrete bHLH transcription factors play functionally overlapping roles in pigmentation patterning in flowers of <i>Antirrhinum majus</i> . New Phytologist, 2021, 231, 849-863.	7.3	28
33	Characterisation of aurone biosynthesis in Antirrhinum majus. Physiologia Plantarum, 2006, 128, 593-603.	5.2	24
34	The dope on l $\hat{a} \in DOPA$ formation for betalain pigments. New Phytologist, 2016, 210, 6-9.	7.3	24
35	The B-ring hydroxylation pattern of anthocyanins can be determined through activity of the flavonoid 3′-hydroxylase on leucoanthocyanidins. Planta, 2014, 240, 1003-1010.	3.2	23
36	Flavonoid and carotenoid pigments in flower tissue of Sandersonia aurantiaca (Hook.). Scientia Horticulturae, 1998, 72, 179-192.	3.6	15

KATHY E SCHWINN

#	Article	IF	CITATIONS
37	Chapter Eight Mechanisms and applications of transcriptional control of phenylpropanoid metabolism. Recent Advances in Phytochemistry, 2001, , 155-169.	0.5	15
38	High concentrations of aromatic acylated anthocyanins found in cauline hairs in Plectranthus ciliatus. Phytochemistry, 2016, 128, 27-34.	2.9	14
39	Failure to launch: the self-regulating Md-MYB10 R6 gene from apple is active in flowers but not leaves of Petunia. Plant Cell Reports, 2015, 34, 1817-1823.	5.6	11
40	Stress, senescence and specialised metabolites in bryophytes. Journal of Experimental Botany, 2022, , .	4.8	11
41	Molecular Biology and Biotechnology of Flavonoid Biosynthesis. , 2005, , 143-218.		10
42	Production of Betacyanins in Transgenic Nicotiana tabacum Increases Tolerance to Salinity. Frontiers in Plant Science, 2021, 12, 653147.	3.6	9
43	A high density linkage map and quantitative trait loci for tree growth for New Zealand mÄnuka (Leptospermum scoparium). New Zealand Journal of Crop and Horticultural Science, 2019, 47, 261-272.	1.3	7
44	The colour variations of flowers in wild <i>Paeonia delavayi</i> plants are determined by four classes of plant pigments. New Zealand Journal of Crop and Horticultural Science, 2022, 50, 69-84.	1.3	7
45	Simple sequence repeat (SSR) markers for New Zealand mÄnuka (<i>Leptospermum scoparium</i>) and transferability to kÄnuka (<i>Kunzea</i> spp.). New Zealand Journal of Crop and Horticultural Science, 2017, 45, 216-222.	1.3	6
46	Biolistics-Based Gene Silencing in Plants Using a Modified Particle Inflow Gun. Methods in Molecular Biology, 2013, 940, 63-74.	0.9	4
47	Control of anthocyanin pigmentation during flower development inCymbidiumorchid. Acta Horticulturae, 2015, , 333-340.	0.2	4
48	Recent Advances in the Molecular Biology and Metabolic Engineering of Flavonoid Biosynthesis in Ornamental Plants. , 0, , 139-166.		2