Cinzia Perrino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5427984/publications.pdf Version: 2024-02-01

		101543	110387
103	4,814	36	64
papers	citations	h-index	g-index
112	112	112	4628
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of COVID-19 lockdown on PM10 composition and sources in the Rome Area (Italy) by elements' chemical fractionation-based source apportionment. Atmospheric Research, 2022, 266, 105970.	4.1	14
2	Assessment of the link between atmospheric dispersion and chemical composition of PM10 at 2-h time resolution. Chemosphere, 2022, 298, 134272.	8.2	0
3	On the Redox-Activity and Health-Effects of Atmospheric Primary and Secondary Aerosol: Phenomenology. Atmosphere, 2022, 13, 704.	2.3	7
4	Indoor PM10 in university classrooms: Chemical composition and source behaviour. Atmospheric Environment, 2022, 287, 119260.	4.1	2
5	Contribution of Primary Biological Aerosol Particles to airborne particulate matter in indoor and outdoor environments. Chemosphere, 2021, 264, 128510.	8.2	12
6	Pan-European rural monitoring network shows dominance of NH ₃ gas and NH ₄ NO ₃ aerosol in inorganic atmospheric pollution load. Atmospheric Chemistry and Physics, 2021, 21, 875-914.	4.9	21
7	Bioaerosol Contribution to Atmospheric Particulate Matter in Indoor University Environments. Sustainability, 2021, 13, 1149.	3.2	13
8	Seasonal Variations in the Chemical Composition of Indoor and Outdoor PM10 in University Classrooms. Sustainability, 2021, 13, 2263.	3.2	5
9	Impact of synoptic meteorological conditions on air quality in three different case studies in Rome, Italy. Atmospheric Pollution Research, 2021, 12, 76-88.	3.8	16
10	Indoor air quality in a domestic environment: Combined contribution of indoor and outdoor PM sources. Building and Environment, 2021, 202, 108050.	6.9	21
11	Association between the Concentration and the Elemental Composition of Outdoor PM2.5 and Respiratory Diseases in Schoolchildren: A Multicenter Study in the Mediterranean Area. Atmosphere, 2020, 11, 1290.	2.3	3
12	Integrated Evaluation of Indoor Particulate Exposure: The VIEPI Project. Sustainability, 2020, 12, 9758.	3.2	22
13	Gaining knowledge on source contribution to aerosol optical absorption properties and organics by receptor modelling. Atmospheric Environment, 2020, 243, 117873.	4.1	9
14	Chemical Composition of PM10 in 16 Urban, Industrial and Background Sites in Italy. Atmosphere, 2020, 11, 479.	2.3	16
15	Oxidative Potential Associated with Urban Aerosol Deposited into the Respiratory System and Relevant Elemental and Ionic Fraction Contributions. Atmosphere, 2020, 11, 6.	2.3	12
16	Comparison Study between Indoor and Outdoor Chemical Composition of PM2.5 in Two Italian Areas. Atmosphere, 2020, 11, 368.	2.3	6
17	Air Quality Characterization at Three Industrial Areas in Southern Italy. Frontiers in Environmental Science, 2020, 7, .	3.3	6
18	High resolution spatial mapping of element concentrations in PM10: A powerful tool for localization of emission sources. Atmospheric Research, 2020, 244, 105060.	4.1	20

#	Article	IF	CITATIONS
19	A combined chemical/size fractionation approach to study winter/summer variations, ageing and source strength of atmospheric particles. Environmental Pollution, 2019, 253, 19-28.	7.5	26
20	The EMEP Intensive Measurement Period campaign, 2008–2009: characterizing carbonaceous aerosol at nine rural sites in Europe. Atmospheric Chemistry and Physics, 2019, 19, 4211-4233.	4.9	20
21	Determination of the main bioaerosol components using chemical markers by liquid chromatography–tandem mass spectrometry. Microchemical Journal, 2019, 149, 103974.	4.5	13
22	Biomass burning contribution to PM10 concentration in Rome (Italy): Seasonal, daily and two-hourly variations. Chemosphere, 2019, 222, 839-848.	8.2	29
23	Indoor air quality in schools of a highly polluted south Mediterranean area. Indoor Air, 2019, 29, 276-290.	4.3	33
24	An inclusive view of Saharan dust advections to Italy and the Central Mediterranean. Atmospheric Environment, 2019, 201, 242-256.	4.1	34
25	Performance Evaluation of a Very-low-volume Sampler for Atmospheric Particulate Matter. Aerosol and Air Quality Research, 2019, 19, 2160-2172.	2.1	10
26	Relationship between domestic smoking and metals and rare earth elements concentration in indoor PM2.5. Environmental Research, 2018, 165, 71-80.	7.5	65
27	Oxidative potential of size-segregated PM in an urban and an industrial area of Italy. Atmospheric Environment, 2018, 187, 292-300.	4.1	53
28	Influence of advanced wood-fired appliances for residential heating on indoor air quality. Chemosphere, 2018, 211, 62-71.	8.2	24
29	In-vivo assesment of the genotoxic and oxidative stress effects of particulate matter on Echinogammarus veneris. Chemosphere, 2017, 173, 124-134.	8.2	14
30	Desert dust contribution to PM10 loads in Italy: Methods and recommendations addressing the relevant European Commission Guidelines in support to the Air Quality Directive 2008/50. Atmospheric Environment, 2017, 161, 288-305.	4.1	35
31	Mass size distribution of particle-bound water. Atmospheric Environment, 2017, 165, 46-56.	4.1	8
32	Evaluating a filtering and recirculating system to reduce dust drift in simulated sowing of dressed seed and abraded dust particle characteristics. Pest Management Science, 2017, 73, 1134-1142.	3.4	12
33	First Results of the "Carbonaceous Aerosol in Rome and Environs (CARE)―Experiment: Beyond Current Standards for PM10. Atmosphere, 2017, 8, 249.	2.3	54
34	Quantitative Interpretation of Air Radon Progeny Fluctuations in Terms of Stability Conditions in the Atmospheric Boundary Layer. Boundary-Layer Meteorology, 2016, 160, 529-550.	2.3	11
35	Assessing the contribution of water to the mass closure of PM10. Atmospheric Environment, 2016, 140, 555-564.	4.1	20
36	Chemical characterization of indoor and outdoor fine particulate matter in an occupied apartment in Rome, Italy. Indoor Air, 2016, 26, 558-570.	4.3	40

#	Article	IF	CITATIONS
37	A new method for assessing the contribution of Primary Biological Atmospheric Particles to the mass concentration of the atmospheric aerosol. Environment International, 2016, 87, 108-115.	10.0	36
38	Composition, size distribution, optical properties, and radiative effects of laboratory-resuspended PM ₁₀ from geological dust of the Rome area, by electron microscopy and radiative transfer modelling. Atmospheric Chemistry and Physics, 2015, 15, 13177-13194.	4.9	3
39	How much is particulate matter near the ground influenced by upper-level processes within and above the PBL? A summertime case study in Milan (Italy) evidences the distinctive role of nitrate. Atmospheric Chemistry and Physics, 2015, 15, 2629-2649.	4.9	42
40	Chemical Composition of Indoor and Outdoor PM2.5 in Three Schools in the City of Rome. Atmosphere, 2015, 6, 1422-1443.	2.3	28
41	Improved Time-Resolved Measurements of Inorganic Ions in Particulate Matter by PILS-IC Integrated with a Sample Pre-Concentration System. Aerosol Science and Technology, 2015, 49, 521-530.	3.1	6
42	Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environmental Science and Pollution Research, 2015, 22, 9204-9214.	5.3	37
43	A device for pneumatic precision drills reducing the drift of the abrasion dust from dressed seed. Crop Protection, 2015, 74, 56-64.	2.1	11
44	Improved identification of transition metals in airborne aerosols by SEM–EDX combined backscattered and secondary electron microanalysis. Environmental Science and Pollution Research, 2014, 21, 4023-4031.	5.3	13
45	Spatial and seasonal variability of carbonaceous aerosol across Italy. Atmospheric Environment, 2014, 99, 587-598.	4.1	137
46	Seasonal variations in the chemical composition of particulate matter: a case study in the Po Valley. Part I: macro-components and mass closure. Environmental Science and Pollution Research, 2014, 21, 3999-4009.	5.3	105
47	Seasonal variations in the chemical composition of particulate matter: a case study in the Po Valley. Part II: concentration and solubility of micro- and trace-elements. Environmental Science and Pollution Research, 2014, 21, 4010-4022.	5.3	64
48	Particulate matter and gaseous pollutants in the Mediterranean Basin: Results from the MED-PARTICLES project. Science of the Total Environment, 2014, 488-489, 297-315.	8.0	32
49	In situ physical and chemical characterisation of the Eyjafjallajökull aerosol plume in the free troposphere over Italy. Atmospheric Chemistry and Physics, 2014, 14, 1075-1092.	4.9	12
50	Sources of PM in an Industrial Area: Comparison between Receptor Model Results and Semiempirical Calculations of Source Contributions. Aerosol and Air Quality Research, 2014, 14, 1558-1572.	2.1	29
51	Characterisation of the local topsoil contribution to airborne particulate matter in the area of Rome (Italy). Source profiles. Atmospheric Environment, 2013, 69, 1-14.	4.1	29
52	Fungal contribution to size-segregated aerosol measured through biomarkers. Atmospheric Environment, 2013, 64, 132-140.	4.1	61
53	Extraction and analysis of fungal spore biomarkers in atmospheric bioaerosol by HPLC–MS–MS and GC–MS. Talanta, 2013, 105, 142-151.	5.5	25
54	Qualitative and quantitative determination of water in airborne particulate matter. Atmospheric Chemistry and Physics, 2013, 13, 1193-1202.	4.9	24

#	Article	IF	CITATIONS
55	Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy. E3S Web of Conferences, 2013, 1, 20002.	0.5	2
56	Evaluation of the nanoparticles contribution to elemental concentration in airborne particulate matter. E3S Web of Conferences, 2013, 1, 07004.	0.5	1
57	Comparing the Performance of Teflon and Quartz Membrane Filters Collecting Atmospheric PM: Influence of Atmospheric Water. Aerosol and Air Quality Research, 2013, 13, 137-147.	2.1	42
58	Elemental Concentration in Atmospheric Particulate Matter: Estimation of Nanoparticle Contribution. Aerosol and Air Quality Research, 2013, 13, 1619-1629.	2.1	22
59	Lessons learnt from the first EMEP intensive measurement periods. Atmospheric Chemistry and Physics, 2012, 12, 8073-8094.	4.9	58
60	The Eyjafjallajökull ash plume – Part I: Physical, chemical and optical characteristics. Atmospheric Environment, 2012, 48, 129-142.	4.1	24
61	Thermal stability of inorganic and organic compounds in atmospheric particulate matter. Atmospheric Environment, 2012, 54, 36-43.	4.1	46
62	Determination of Sb(III), Sb(V) and identification of Sb-containing nanoparticles in airborne particulate matter. Procedia Environmental Sciences, 2011, 4, 209-217.	1.4	15
63	Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmospheric Pollution Research, 2011, 2, 418-427.	3.8	166
64	Relevance of Sb(III), Sb(V), and Sb-containing nano-particles in urban atmospheric particulate matter. Analytical and Bioanalytical Chemistry, 2010, 397, 2533-2542.	3.7	26
65	A European aerosol phenomenology – 3: Physical and chemical characteristics of particulate matter from 60 rural, urban, and kerbside sites across Europe. Atmospheric Environment, 2010, 44, 1308-1320.	4.1	654
66	Size-resolved aerosol chemical composition over the Italian Peninsula during typical summer and winter conditions. Atmospheric Environment, 2010, 44, 5269-5278.	4.1	99
67	Time-resolved measurements of water-soluble ions and elements in atmospheric particulate matter for the characterization of local and long-range transport events. Chemosphere, 2010, 80, 1291-1300.	8.2	34
68	Influence of natural events on the concentration and composition of atmospheric particulate matter. Atmospheric Environment, 2009, 43, 4766-4779.	4.1	80
69	Enhancement of source traceability of atmospheric PM by elemental chemical fractionation. Atmospheric Environment, 2009, 43, 4754-4765.	4.1	64
70	Characterisation of gaseous and particulate atmospheric pollutants in the East Mediterranean by diffusion denuder sampling lines. Environmental Monitoring and Assessment, 2009, 152, 231-244.	2.7	16
71	Determination of soluble ions and elements in ambient air suspended particulate matter: Inter-technique comparison of XRF, IC and ICP for sample-by-sample quality control. Talanta, 2009, 77, 1821-1829.	5.5	61
72	Seasonal Differences in Atmospheric Nitrous Acid near Mediterranean Urban Areas. Water, Air, and Soil Pollution, 2008, 188, 81-92.	2.4	12

#	Article	IF	CITATIONS
73	Source characterization of fine and coarse particles at the East Mediterranean coast. Atmospheric Environment, 2008, 42, 6114-6130.	4.1	45
74	Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmospheric Environment, 2008, 42, 8161-8175.	4.1	99
75	Influence of atmospheric stability on the mass concentration and chemical composition of atmospheric particles: A case study in Rome, Italy. Environment International, 2008, 34, 621-628.	10.0	73
76	A gas/aerosol air pollutants study over the urban area of Rome using a comprehensive chemical transport model. Atmospheric Environment, 2007, 41, 7286-7303.	4.1	76
77	Inorganic constituents of urban air pollution in the Lazio region (Central Italy). Environmental Monitoring and Assessment, 2007, 128, 133-151.	2.7	38
78	Inorganic constituents of urban air pollution in the Lazio region (Central Italy). Environmental Monitoring and Assessment, 2007, 136, 69-86.	2.7	26
79	Improved characterisation of inorganic components in airborne particulate matter. Environmental Chemistry Letters, 2006, 3, 186-191.	16.2	18
80	Nitrous acid in the urban area of Rome. Atmospheric Environment, 2006, 40, 3123-3133.	4.1	121
81	Two-stage chemical fractionation method for the analysis of elements and non-volatile inorganic ions in PM10 samples: Application to ambient samples collected in Rome (Italy). Atmospheric Environment, 2006, 40, 7908-7923.	4.1	22
82	Development of a variable-path-length diffusive sampler for ammonia and evaluation of ammonia pollution in the urban area of Rome, Italy. Atmospheric Environment, 2004, 38, 6667-6672.	4.1	13
83	Gaseous ammonia in the urban area of Rome, Italy and its relationship with traffic emissions. Atmospheric Environment, 2002, 36, 5385-5394.	4.1	159
84	Monitoring acidic air pollutants near Rome by means of diffusion lines: development of a specific quality control procedure. Atmospheric Environment, 2001, 35, 331-341.	4.1	30
85	An atmospheric stability index based on radon progeny measurements for the evaluation of primary urban pollution. Atmospheric Environment, 2001, 35, 5235-5244.	4.1	110
86	UV-visible absorption cross sections of nitrous acid. Journal of Geophysical Research, 2000, 105, 14585-14592.	3.3	178
87	Use of ion chromatography for monitoring atmospheric pollution in background networks. Journal of Chromatography A, 1999, 846, 269-275.	3.7	9
88	Optimization of the coating layer for the measurement of ammonia by diffusion denuders. Atmospheric Environment, 1999, 33, 4579-4587.	4.1	58
89	Measurement of nitrous acid in milan, italy, by doas and diffusion denuders. Atmospheric Environment, 1996, 30, 3599-3609.	4.1	102
90	Evaluation of a High-Purity and High-Stability Continuous Generation System for Nitrous Acid. Environmental Science & Technology, 1995, 29, 2390-2395.	10.0	97

#	Article	IF	CITATIONS
91	Measurement of high concentration of nitrous acid inside automobiles. Atmospheric Environment, 1995, 29, 345-351.	4.1	35
92	Measurement of Atmospheric Nitric Acid in Gas Phase and Nitrate in Particulate Matter by means of Annular Denuders. International Journal of Environmental Analytical Chemistry, 1994, 54, 183-201.	3.3	21
93	A denuder technique for the measurement of nitrous acid in urban atmospheres. Atmospheric Environment Part A General Topics, 1993, 27, 1721-1728.	1.3	74
94	Field intercomparison exercise on nitric acid and nitrate measurement (Rome, 1988): A critical approach to the evaluation of the results. Science of the Total Environment, 1993, 133, 39-71.	8.0	16
95	Prediction and experimental evidence for high air concentration of nitrous acid in indoor environments. Atmospheric Environment Part A General Topics, 1991, 25, 1055-1061.	1.3	85
96	Criteria for the choice of a denuder sampling technique devoted to the measurement of atmospheric nirous and nitric acids. Atmospheric Environment Part A General Topics, 1990, 24, 617-626.	1.3	103
97	Generation of Standard Atmospheres of Nitrous Acid. , 1990, , 140-144.		4
98	Evaluation of laboratory and field performance of denuder tubes: A theoretical approach. Atmospheric Environment, 1989, 23, 1517-1530.	1.0	36
99	Uptake of nitrous acid and nitrogen oxides by nylon surfaces: Implications for nitric acid measurement. Atmospheric Environment, 1988, 22, 1925-1930.	1.0	42
100	The nitric acid shootout: Field comparison of measurement methods. Atmospheric Environment, 1988, 22, 1519-1539.	1.0	106
101	Sampling and analysis of ambient air near Los Angeles using an annular denuder system. Atmospheric Environment, 1988, 22, 1619-1625.	1.0	17
102	Negative interference of teflon sampling devices in the determination of nitric acid and particulate nitrate. Science of the Total Environment, 1988, 76, 93-99.	8.0	11
103	Annular denuder method for sampling reactive gases and aerosols in the atmosphere. Science of the Total Environment, 1987, 67, 1-16.	8.0	141