Marcos Chaos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5426906/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A comprehensive kinetic mechanism for CO, CH2O, and CH3OH combustion. International Journal of Chemical Kinetics, 2007, 39, 109-136.	1.6	683
2	Comprehensive H ₂ /O ₂ kinetic model for highâ€pressure combustion. International Journal of Chemical Kinetics, 2012, 44, 444-474.	1.6	682
3	A jet fuel surrogate formulated by real fuel properties. Combustion and Flame, 2010, 157, 2333-2339.	5.2	484
4	Thermal decomposition reaction and a comprehensive kinetic model of dimethyl ether. International Journal of Chemical Kinetics, 2008, 40, 1-18.	1.6	411
5	Chemicalâ€kinetic modeling of ignition delay: Considerations in interpreting shock tube data. International Journal of Chemical Kinetics, 2010, 42, 143-150.	1.6	190
6	SPONTANEOUS IGNITION OF PRESSURIZED RELEASES OF HYDROGEN AND NATURAL GAS INTO AIR. Combustion Science and Technology, 2007, 179, 663-694.	2.3	174
7	A high-temperature chemical kinetic model for primary reference fuels. International Journal of Chemical Kinetics, 2007, 39, 399-414.	1.6	169
8	Syngas Combustion Kinetics and Applications. Combustion Science and Technology, 2008, 180, 1053-1096.	2.3	166
9	Negative pressure dependence of mass burning rates of H2/CO/O2/diluent flames at low flame temperatures. Combustion and Flame, 2010, 157, 618-631.	5.2	156
10	High temperature ignition and combustion enhancement by dimethyl ether addition to methane–air mixtures. Proceedings of the Combustion Institute, 2007, 31, 1215-1222.	3.9	145
11	Dimethyl ether autoignition in a rapid compression machine: Experiments and chemical kinetic modeling. Fuel Processing Technology, 2008, 89, 1244-1254.	7.2	143
12	Evaluation of optimization schemes and determination of solid fuel properties for CFD fire models using bench-scale pyrolysis tests. Proceedings of the Combustion Institute, 2011, 33, 2599-2606.	3.9	140
13	Methyl formate oxidation: Speciation data, laminar burning velocities, ignition delay times, and a validated chemical kinetic model. International Journal of Chemical Kinetics, 2010, 42, 527-549.	1.6	134
14	Pool fires – An empirical correlation. Combustion and Flame, 2013, 160, 2964-2974.	5.2	115
15	lgnition of syngas/air and hydrogen/air mixtures at low temperatures and high pressures: Experimental data interpretation and kinetic modeling implications. Combustion and Flame, 2008, 152, 293-299.	5.2	106
16	Estimation of beech pyrolysis kinetic parameters by Shuffled Complex Evolution. Bioresource Technology, 2016, 200, 658-665.	9.6	100
17	Low and intermediate temperature oxidation of ethanol and ethanol–PRF blends: An experimental and modeling study. Combustion and Flame, 2009, 156, 2346-2350.	5.2	93
18	Interpreting chemical kinetics from complex reaction–advection–diffusion systems: Modeling of flow reactors and related experiments. Progress in Energy and Combustion Science, 2014, 44, 19-39.	31.2	87

MARCOS CHAOS

#	Article	IF	CITATIONS
19	Computational Singular Perturbation Analysis of Two-Stage Ignition of Large Hydrocarbonsâ€. Journal of Physical Chemistry A, 2006, 110, 7003-7009.	2.5	79
20	Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. Physical Chemistry Chemical Physics, 2009, 11, 1328.	2.8	68
21	Radiative emissions measurements from a buoyant, turbulent line flame under oxidizer-dilution quenching conditions. Fire Safety Journal, 2015, 76, 74-84.	3.1	54
22	Spectral Aspects of Bench-Scale Flammability Testing: Application to Hardwood Pyrolysis. Fire Safety Science, 2014, 11, 165-178.	0.3	42
23	Experimental and numerical studies characterizing the burning dynamics of wildland fuels. Combustion and Flame, 2016, 168, 113-126.	5.2	41
24	Pyrolysis of corrugated cardboard in inert and oxidative environments. Proceedings of the Combustion Institute, 2013, 34, 2583-2590.	3.9	39
25	Total radiative heat loss and radiation distribution of liquid pool fire flames. Fire Safety Journal, 2017, 89, 16-21.	3.1	36
26	Combustion Characteristics of Materials and Generation of Fire Products. , 2016, , 1143-1232.		35
27	Combustion Characteristics of Mechanically Alloyed Ultrafine-Grained Al-Mg Powders. Advanced Engineering Materials, 2006, 8, 563-567.	3.5	34
28	Large-scale fire suppression modeling of corrugated cardboard boxes on wood pallets in rack-storage configurations. Fire Safety Journal, 2017, 91, 695-704.	3.1	32
29	Application of sensitivity analyses to condensed-phase pyrolysis modeling. Fire Safety Journal, 2013, 61, 254-264.	3.1	28
30	Study of the importance of non-uniform mass density in numerical simulations of fire spread over MDF panels in a corner configuration. Combustion and Flame, 2019, 200, 303-315.	5.2	27
31	Numerical Simulation of Sprinkler Suppression of Rack Storage Fires. Fire Safety Science, 2014, 11, 1170-1183.	0.3	27
32	Schmidt number effects on laminar jet diffusion flame liftoff. Combustion and Flame, 2005, 141, 469-472.	5.2	22
33	Lewis number effects in laminar diffusion flames near and away from extinction. Proceedings of the Combustion Institute, 2007, 31, 1231-1237.	3.9	22
34	FUEL LEWIS NUMBER EFFECTS IN UNSTEADY BURKE–SCHUMANN HYDROGEN FLAMES. Combustion Science and Technology, 2004, 177, 75-88.	2.3	8
35	Radiation Characteristics of Corrugated Cardboard Flames. Fire Safety Science, 2014, 11, 97-110.	0.3	8
36	AN EXPERIMENTAL STUDY OF PULSATING INSTABILITY IN NEAR-LIMIT LAMINAR NONPREMIXED FLAMES. Combustion Science and Technology, 2004, 176, 1191-1215.	2.3	7

MARCOS CHAOS

#	Article	IF	CITATIONS
37	lgnition and Burning of Fibreboard Exposed to Transient Irradiation. Fire Technology, 2021, 57, 1095-1113.	3.0	6
38	Non-monotonic Pressure Dependence in Laminar Mass Burning Rates for Hydrogen Flames. , 2009, , .		3
39	Experimental investigation and inverse modeling of the flammability behavior of cartoned plastic commodity. Proceedings of the Combustion Institute, 2017, 36, 3177-3184.	3.9	3
40	Validation of pyrolysis model in transient heating scenarios and diverse spectral boundary conditions. Fire Safety Journal, 2021, 120, 103064.	3.1	3
41	Effects of vortex shedding by particles in acoustical transducers. Journal of Sound and Vibration, 2004, 270, 473-479.	3.9	2
42	Determination of Separation Distances Inside Large Buildings. Fire Technology, 2017, 53, 249-281.	3.0	2
43	An Investigation of the Effect of Swirl Vane Angle on Fuel Concentration and Velocity Fields in Gas Turbine Mixers. , 2005, , 87.		1
44	Analysis of dilute aerosol flow and noise generation in an acoustic transducer. Journal of Aerosol Science, 2008, 39, 441-449.	3.8	1
45	Kinetic Modeling of the H2/O2 Reaction in High-Pressure Flames. , 2011, , .		1
46	Effect of temperature on LX-17 and PBX 9502 in the cylinder test. AIP Conference Proceedings, 2018, , .	0.4	1
47	Spectral radiation intensities of a turbulent buoyant ethylene flame: CFD-aided tomographic inversion. Fire Safety Journal, 2017, 91, 490-497.	3.1	0
48	An Experimental Study of Complex Fuel Burning Behavior Using Characteristic Fuel Unit Approach. , 2017, , 549-556.		0
49	Revisiting the Kinematics of the Cylinder Test. Propellants, Explosives, Pyrotechnics, 0, , .	1.6	0
50	Back Cover: Revisiting the Kinematics of the Cylinder Test (Prop., Explos., Pyrotech. 6/2022). Propellants, Explosives, Pyrotechnics, 2022, 47, .	1.6	0