
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542687/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A redox-stable efficient anode for solid-oxide fuel cells. Nature Materials, 2003, 2, 320-323.	27.5	1,114
2	Ammonia and related chemicals as potential indirect hydrogen storage materials. International Journal of Hydrogen Energy, 2012, 37, 1482-1494.	7.1	852
3	A redox-stable efficient anode for solid-oxide fuel cells. , 2010, , 259-262.		730
4	A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes. Journal of Materials Chemistry, 2006, 16, 1603.	6.7	373
5	A Stable, Easily Sintered Proton- Conducting Oxide Electrolyte for Moderate-Temperature Fuel Cells and Electrolyzers. Advanced Materials, 2006, 18, 1581-1584.	21.0	365
6	Synthesis and Characterization of (La[sub 0.75]Sr[sub 0.25])Cr[sub 0.5]Mn[sub 0.5]O[sub 3â^'Î], a Redox-Stable, Efficient Perovskite Anode for SOFCs. Journal of the Electrochemical Society, 2004, 151, A252.	2.9	363
7	Synthesis of ammonia directly from air and water at ambient temperature and pressure. Scientific Reports, 2013, 3, 1145.	3.3	339
8	A direct urea fuel cell – power from fertiliser and waste. Energy and Environmental Science, 2010, 3, 438.	30.8	335
9	Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells. Advanced Energy Materials, 2011, 1, 314-332.	19.5	319
10	Advances in reforming and partial oxidation of hydrocarbons for hydrogen production and fuel cell applications. Renewable and Sustainable Energy Reviews, 2018, 82, 761-780.	16.4	307
11	Conductivity studies of dense yttrium-doped BaZrO3 sintered at 1325°C. Journal of Solid State Chemistry, 2007, 180, 3493-3503.	2.9	274
12	Solid-state electrochemical synthesis of ammonia: a review. Journal of Solid State Electrochemistry, 2011, 15, 1845-1860.	2.5	271
13	Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process. Materials Research Bulletin, 2001, 36, 1245-1258.	5.2	217
14	Ureaâ€Based Fuel Cells and Electrocatalysts for Urea Oxidation. Energy Technology, 2016, 4, 1329-1337.	3.8	189
15	Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Advanced Energy and Sustainability Research, 2021, 2, 2000043.	5.8	188
16	CuInS2 quantum dots synthesized by a solvothermal route and their application as effective electron acceptors for hybrid solar cells. Journal of Materials Chemistry, 2010, 20, 7570.	6.7	180
17	Catalytic Properties of the Perovskite Oxide La0.75Sr0.25Cr0.5Fe0.5O3-Î'in Relation to Its Potential as a Solid Oxide Fuel Cell Anode Material. Chemistry of Materials, 2004, 16, 4116-4121.	6.7	178
18	An Efficient Solid Oxide Fuel Cell Based upon Single-Phase Perovskites. Advanced Materials, 2005, 17, 1734-1737.	21.0	178

#	Article	IF	CITATIONS
19	Recent progress in ammonia fuel cells and their potential applications. Journal of Materials Chemistry A, 2021, 9, 727-752.	10.3	177
20	Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chemical Record, 2004, 4, 83-95.	5.8	174
21	Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process. Sensors and Actuators B: Chemical, 1997, 40, 161-165.	7.8	167
22	Ammonia as a Suitable Fuel for Fuel Cells. Frontiers in Energy Research, 0, 2, .	2.3	163
23	Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 77, 172-176.	3.5	143
24	Preparation of nano-sized nickel as anode catalyst for direct urea and urine fuel cells. Journal of Power Sources, 2011, 196, 5021-5026.	7.8	141
25	Metal–polydopamine frameworks and their transformation to hollow metal/N-doped carbon particles. Nanoscale, 2017, 9, 5323-5328.	5.6	140
26	Direct Ammonia Alkaline Anion-Exchange Membrane Fuel Cells. Electrochemical and Solid-State Letters, 2010, 13, B83.	2.2	139
27	Salt-concentrated acetate electrolytes for a high voltage aqueous Zn/MnO2 battery. Energy Storage Materials, 2020, 28, 205-215.	18.0	136
28	Electrodeposited NiCu bimetal on carbon paper as stable non-noble anode for efficient electrooxidation of ammonia. Applied Catalysis B: Environmental, 2018, 237, 1101-1109.	20.2	130
29	Electrical properties in La2Sr4Ti6O19\$minus;\$delta;: a potential anode for high temperature fuel cells. Solid State Ionics, 2003, 159, 159-165.	2.7	127
30	Directly growing hierarchical nickel-copper hydroxide nanowires on carbon fibre cloth for efficient electrooxidation of ammonia. Applied Catalysis B: Environmental, 2017, 218, 470-479.	20.2	122
31	Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte. RSC Advances, 2013, 3, 18016.	3.6	105
32	Methane Oxidation at Redox Stable Fuel Cell Electrode La0.75Sr0.25Cr0.5Mn0.5O3-δ. Journal of Physical Chemistry B, 2006, 110, 21771-21776.	2.6	97
33	Novel Proton Conductors in the Layered Oxide Material Li _x lAl _{0.5} Co _{0.5} O ₂ . Advanced Energy Materials, 2014, 4, 1301683.	19.5	95
34	Synthesis of ammonia directly from wet air at intermediate temperature. Applied Catalysis B: Environmental, 2014, 152-153, 212-217.	20.2	91
35	Recent development of perovskite oxide-based electrocatalysts and their applications in low to intermediate temperature electrochemical devices. Materials Today, 2021, 49, 351-377.	14.2	91
36	Electrochemical synthesis of ammonia based on doped-ceria-carbonate composite electrolyte and perovskite cathode. Solid State Ionics, 2011, 201, 94-100.	2.7	89

#	Article	IF	CITATIONS
37	Structural origins of the differing grain conductivity values in BaZr0.9Y0.1O2.95 and indication of novel approach to counter defect association. Journal of Materials Chemistry, 2008, 18, 3414.	6.7	88
38	Ethanol-sensing characteristics of barium stannate prepared by chemical precipitation. Sensors and Actuators B: Chemical, 2000, 71, 223-227.	7.8	87
39	Electronic transport in the novel SOFC anode material La1â^'xSrxCr0.5Mn0.5O3±δ. Solid State Ionics, 2006, 177, 2005-2008.	2.7	84
40	Electrochemical synthesis of ammonia based on a carbonate-oxide composite electrolyte. Solid State Ionics, 2011, 182, 133-138.	2.7	84
41	Phase Transition in Perovskite Oxide La0.75Sr0.25Cr0.5Mn0.5O3-δObserved by in Situ High-Temperature Neutron Powder Diffraction. Chemistry of Materials, 2006, 18, 5453-5460.	6.7	82
42	An efficient ceramic-based anode for solid oxide fuel cells. Journal of Power Sources, 2007, 171, 663-669.	7.8	82
43	Highly active Ni–Fe double hydroxides as anode catalysts for electrooxidation of urea. New Journal of Chemistry, 2017, 41, 4190-4196.	2.8	79
44	Progress in inorganic cathode catalysts for electrochemical conversion of carbon dioxide into formate or formic acid. Journal of Applied Electrochemistry, 2017, 47, 661-678.	2.9	75
45	Preparation of a hybrid Cu ₂ O/CuMoO ₄ nanosheet electrode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 17749-17756.	10.3	71
46	Historical development and novel concepts on electrolytes for aqueous rechargeable batteries. Energy and Environmental Science, 2022, 15, 1805-1839.	30.8	71
47	RuCo alloy bimodal nanoparticles embedded in N-doped carbon: a superior pH-universal electrocatalyst outperforms benchmark Pt for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2020, 8, 12810-12820.	10.3	69
48	Conductivity of SnP2O7 and In-doped SnP2O7 prepared by an aqueous solution method. Solid State Ionics, 2009, 180, 148-153.	2.7	64
49	Structural and Electrical Properties of the Perovskite Oxide Sr2FeNbO6. Chemistry of Materials, 2004, 16, 2309-2316.	6.7	63
50	Ionic conductivity of amorphous lithium lanthanum titanate thin film. Solid State Ionics, 2005, 176, 553-558.	2.7	62
51	Optimization of Mixed Conducting Properties of Y2O3–ZrO2–TiO2 and Sc2O3–Y2O3–ZrO2–TiO2 Sol Solutions as Potential SOFC Anode Materials. Journal of Solid State Chemistry, 2002, 165, 12-18.	id _{2.9}	55
52	Recent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2016, 4, 16272-16287.	10.3	55
53	Synthesis of NiMoS ₄ for High-Performance Hybrid Supercapacitors. Journal of the Electrochemical Society, 2017, 164, A2881-A2888.	2.9	55
54	Electrochemical synthesis of ammonia from N2 and H2O based on (Li,Na,K)2CO3–Ce0.8Gd0.18Ca0.02O2â^'δ composite electrolyte and CoFe2O4 cathode. International Journal of Hydrogen Energy, 2014, 39, 4322-4330.	7.1	52

#	Article	IF	CITATIONS
55	A high performance intermediate temperature fuel cell based on a thick oxide–carbonate electrolyte. Journal of Power Sources, 2009, 194, 967-971.	7.8	47
56	Kinetics of the reactive sintering of kaolinite-aluminum hydroxide extrudate. Ceramics International, 2002, 28, 479-486.	4.8	46
57	Stable, easily sintered BaCe0.5Zr0.3Y0.16Zn0.04O3â~δ electrolyte-based protonic ceramic membrane fuel cells with Ba0.5Sr0.5Zn0.2Fe0.8O3â~δ perovskite cathode. Journal of Power Sources, 2008, 183, 479-484.	7.8	46
58	Durability study of an intermediate temperature fuel cell based on an oxide–carbonate composite electrolyte. International Journal of Hydrogen Energy, 2010, 35, 6934-6940.	7.1	46
59	Anionic membrane and ionomer based on poly(2,6-dimethyl-1,4-phenylene oxide) for alkaline membrane fuel cells. Journal of Power Sources, 2011, 196, 8272-8279.	7.8	46
60	A stable intermediate temperature fuel cell based on doped-ceria–carbonate composite electrolyte and perovskite cathode. Electrochemistry Communications, 2011, 13, 582-585.	4.7	45
61	Synthesis of ammonia directly from wet air using new perovskite oxide La0.8Cs0.2Fe0.8Ni0.2O3-δas catalyst. Electrochimica Acta, 2014, 123, 582-587.	5.2	45
62	Preparation of nanoporous nickel copper sulfide on carbon cloth for high-performance hybrid supercapacitors. Electrochimica Acta, 2018, 273, 170-180.	5.2	45
63	Preferentially oriented large antimony trisulfide single-crystalline cuboids grown on polycrystalline titania film for solar cells. Communications Chemistry, 2019, 2, .	4.5	45
64	Preparation and properties of γ-Fe2O3 and Y2O3 doped γ-Fe2O3 by a sol–gel process. Sensors and Actuators B: Chemical, 1999, 61, 33-38.	7.8	44
65	A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells. Scientific Reports, 2016, 6, 31839.	3.3	41
66	Roadmap on inorganic perovskites for energy applications. JPhys Energy, 2021, 3, 031502.	5.3	40
67	Achieving Both High Selectivity and Current Density for CO ₂ Reduction to Formate on Nanoporous Tin Foam Electrocatalysts. ChemistrySelect, 2016, 1, 1711-1715.	1.5	38
68	Intermediate temperature stable proton conductors based upon SnP2O7, including additional H3PO4. Journal of Materials Chemistry, 2010, 20, 7827.	6.7	37
69	Electrochemical Synthesis of Ammonia Based on Co3Mo3N Catalyst and LiAlO2–(Li,Na,K)2CO3 Composite Electrolyte. Electrocatalysis, 2015, 6, 286-294.	3.0	37
70	Electrochemical synthesis of ammonia from wet nitrogen via a dual-chamber reactor using La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3â^' δ-Ce 0.8 Gd 0.18 Ca 0.02 O 2â´Î´ composite cathode. Catalysis Today, 2017, 286, 51-56.	4.4	37
71	Evaluating the effectiveness of <i>in situ</i> characterization techniques in overcoming mechanistic limitations in lithium–sulfur batteries. Energy and Environmental Science, 2022, 15, 1423-1460.	30.8	37
72	Preparation of LiMO2 (M=Co, Ni) cathode materials for intermediate temperature fuel cells by sol-gel processes. Solid State Ionics, 1999, 124, 53-59.	2.7	36

#	Article	IF	CITATIONS
73	Titanate cathodes with enhanced electrical properties achieved via growing surface Ni particles toward efficient carbon dioxide electrolysis. Physical Chemistry Chemical Physics, 2016, 18, 3137-3143.	2.8	36
74	Construction of porous N-doped graphene layer for efficient oxygen reduction reaction. Chemical Engineering Science, 2019, 194, 36-44.	3.8	34
75	An Efficient Symmetric Electrolyzer Based On Bifunctional Perovskite Catalyst for Ammonia Electrolysis. Advanced Science, 2021, 8, e2101299.	11.2	34
76	Study on the structural and electrical properties of the double perovskite oxide SrMn0.5Nb0.5O3â^î^. Journal of Materials Chemistry, 2002, 12, 2356-2360.	6.7	32
77	Promotion effect of proton-conducting oxide BaZr0.1Ce0.7Y0.2O3â [~] Î [~] on the catalytic activity of Ni towards ammonia synthesis from hydrogen and nitrogen. International Journal of Hydrogen Energy, 2018, 43, 17726-17736.	7.1	32
78	Investigation of the Mixed Conducting Oxide ScYZT as a Potential SOFC Anode Material. Journal of the Electrochemical Society, 2004, 151, A497.	2.9	31
79	Perchlorate Based "Oversaturated Gel Electrolyte―for an Aqueous Rechargeable Hybrid Zn–Li Battery. ACS Applied Energy Materials, 2020, 3, 2526-2536.	5.1	31
80	Conductivity of a new pyrophosphate Sn0.9Sc0.1(P2O7)1â^îr´ prepared by an aqueous solution method. Journal of Alloys and Compounds, 2009, 486, 380-385.	5.5	30
81	Conductivity and redox stability of perovskite oxide SrFe1-xTixO3-δ (xÂâ‰ Â 0.3). Solid State Sciences, 2015, 46, 62-70.	3.2	30
82	Improved stability and activity of Fe-based catalysts through strong metal support interactions due to extrinsic oxygen vacancies in Ce _{0.8} Sm _{0.2} O _{2â^î(} for the efficient synthesis of ammonia. Journal of Materials Chemistry A, 2020, 8, 16676-16689.	10.3	30
83	Synthesis of ammonia directly from wet nitrogen using a redox stable La _{0.75} Sr _{0.25} Cr _{0.5} Fe _{0.5} O _{3â^î^} –Ce _{0.8< cathode. RSC Advances, 2015, 5, 38977-38983.}	⊲/ sub >Gd∢	<sab>0.18<</s
84	Proton conductivity of potassium doped barium zirconates. Journal of Solid State Chemistry, 2010, 183, 93-98.	2.9	28
85	High Ionic Conductivity in a LiFeO ₂ –LiAlO ₂ Composite Under H ₂ /Air Fuel Cell Conditions. Chemistry - A European Journal, 2015, 21, 1350-1358.	3.3	28
86	Synthesis of Li ₂ Ni ₂ (MoO ₄) ₃ as a high-performance positive electrode for asymmetric supercapacitors. RSC Advances, 2017, 7, 13304-13311.	3.6	28
87	High-temperature stability study of the oxygen-ion conductor La0.9Sr0.1Ga0.8Mg0.2O3 â^' x. Journal of Materials Chemistry, 2000, 10, 1829-1833.	6.7	27
88	Cost-effective solid oxide fuel cell prepared by single step co-press-firing process with lithiated NiO cathode. Electrochemistry Communications, 2010, 12, 1589-1592.	4.7	27
89	Efficient CO 2 electrolysis with scandium doped titanate cathode. International Journal of Hydrogen Energy, 2017, 42, 8197-8206.	7.1	27
90	Novel redox reversible oxide, Sr-doped cerium orthovanadate to metavanadate. Journal of Materials Chemistry, 2011, 21, 525-531.	6.7	26

#	Article	IF	CITATIONS
91	Electro-Responsive Polystyrene Shape Memory Polymer Nanocomposites. Nanoscience and Nanotechnology Letters, 2012, 4, 814-820.	0.4	26
92	Electrode materials for intermediate temperature proton-conducting fuel cells. Journal of Applied Electrochemistry, 2000, 30, 153-157.	2.9	25
93	Preparation of dense La0.5Sr0.5Fe0.8Cu0.2O3â^îŕ–(Li,Na)2CO3–LiAlO2 composite membrane for CO2 separation. Journal of Membrane Science, 2014, 468, 380-388.	8.2	25
94	Cation doped cerium oxynitride with anion vacancies for Fe-based catalyst with improved activity and oxygenate tolerance for efficient synthesis of ammonia. Applied Catalysis B: Environmental, 2021, 285, 119843.	20.2	25
95	Acetate-based â€~oversaturated gel electrolyte' enabling highly stable aqueous Zn-MnO2 battery. Energy Storage Materials, 2021, 42, 240-251.	18.0	25
96	Synthesis and ionic conduction of apatite-type materials. Ionics, 2000, 6, 389-396.	2.4	23
97	Low-temperature protonic ceramic membrane fuel cells (PCMFCs) with SrCo0.9Sb0.1O3â~`î´ cubic perovskite cathode. Journal of Power Sources, 2008, 185, 937-940.	7.8	23
98	Electrochemical synthesis of ammonia from wet nitrogen using La0.6Sr0.4FeO3â ´Î î–Ce0.8Gd0.18Ca0.02O2â ´Î ´ composite cathode. RSC Advances, 2014, 4, 18749-18754.	3.6	22
99	Chemical stability study of Li2SO4 on the operation condition of a H2/O2 fuel cell. Solid State Ionics, 1999, 116, 29-33.	2.7	21
100	A simple high-performance matrix-free biomass molten carbonate fuel cell without CO ₂ recirculation. Science Advances, 2016, 2, e1600772.	10.3	21
101	Electrochemical Synthesis of Ammonia Directly from Wet N2Using La0.6Sr0.4Fe0.8Cu0.2O3-δ-Ce0.8Gd0.18Ca0.02O2-δComposite Catalyst. Journal of the Electrochemical Society, 2014, 161, H350-H354.	2.9	20
102	Demonstration of direct conversion of CO 2 /H 2 O into syngas in a symmetrical proton-conducting solid oxide electrolyzer. International Journal of Hydrogen Energy, 2016, 41, 1170-1175.	7.1	20
103	A scandium-doped manganate anode for a proton-conducting solid oxide steam electrolyzer. RSC Advances, 2016, 6, 641-647.	3.6	20
104	Electricity Generation from Ammonia in Landfill Leachate by an Alkaline Membrane Fuel Cell Based on Precious-Metal-Free Electrodes. ACS Sustainable Chemistry and Engineering, 2020, 8, 12817-12824.	6.7	20
105	Synthesis of ammonia directly from wet air using Sm _{0.6} Ba _{0.4} Fe _{0.8} Cu _{0.2} O _{3â~î^} as the catalyst. Faraday Discussions, 2015, 182, 353-363.	3.2	19
106	Interface formation and Mn segregation of directly assembled La0.8Sr0.2MnO3 cathode on Y2O3-ZrO2 and Gd2O3-CeO2 electrolytes of solid oxide fuel cells. Solid State Ionics, 2018, 325, 176-188.	2.7	19
107	Investigation of Perovskite Oxide SrCo 0.8 Cu 0.1 Nb 0.1 O 3– δas a Cathode Material for Room Temperature Direct Ammonia Fuel Cells. ChemSusChem, 2019, 12, 2788-2794.	6.8	19
108	Nitrate-based â€~oversaturated gel electrolyte' for high-voltage and high-stability aqueous lithium batteries. Energy Storage Materials, 2021, 37, 598-608.	18.0	19

#	Article	IF	CITATIONS
109	Oxygen Vacancyâ€Rich La _{0.5} Sr _{1.5} Ni _{0.9} Cu _{0.1} O _{4–δ} as a Highâ€Performance Bifunctional Catalyst for Symmetric Ammonia Electrolyzer. Advanced Functional Materials, 2022, 32, .	14.9	19
110	Proton conductivity of Al(H2PO4)3–H3PO4 composites at intermediate temperature. Solid State Ionics, 2009, 180, 343-350.	2.7	18
111	Structure and conductivity of strontium-doped cerium orthovanadates Ce1â^'Sr VO4 (0â‰ ¤ â‰ 9 .175). Journal of Solid State Chemistry, 2010, 183, 1231-1238.	2.9	18
112	Structure, conductivity and redox reversibility of Ca-doped cerium metavanadate. Journal of Materials Chemistry, 2011, 21, 8854.	6.7	18
113	Fabrication of solid oxide fuel cell based on doped ceria electrolyte by one-step sintering at 800°C. Solid State Ionics, 2011, 203, 47-51.	2.7	18
114	An intermediate temperature solid oxide fuel cell fabricated by one step co-press-sintering. International Journal of Hydrogen Energy, 2011, 36, 14643-14647.	7.1	18
115	Preparation and conductivity of solid high-proton conductor silica gels containing 12-tungstogermanic heteropoly acid. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 68, 161-165.	3.5	17
116	Structural and electrochemical properties of the perovskite oxide Pr0.7Sr0.3Cr0.9Ni0.1O3â~î´. Solid State Ionics, 2008, 179, 725-731.	2.7	17
117	Study on conductivity and redox stability of iron orthovanadate. Materials Chemistry and Physics, 2011, 126, 614-618.	4.0	17
118	Ammonia Carbonate Fuel Cells Based on a Mixed NH4+/H+ Ion Conducting Electrolyte. ECS Electrochemistry Letters, 2013, 2, F37-F40.	1.9	17
119	Growth of Compact CH ₃ NH ₃ PbI ₃ Thin Films Governed by the Crystallization in PbI ₂ Matrix for Efficient Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 8649-8658.	8.0	17
120	Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells. Journal of Power Sources, 2018, 374, 113-120.	7.8	17
121	Structure, conductivity and redox stability of solid solution Ce1â^x Ca x VO4 (0Ââ‰ÂxÂâ‰Â0.4125). Journal of Materials Science, 2011, 46, 316-326.	3.7	16
122	A fuel cell operating between room temperature and 250°C based on a new phosphoric acid based composite electrolyte. Journal of Power Sources, 2010, 195, 6983-6987.	7.8	15
123	Structure and properties of nonstoichiometric mixed perovskites A3B′1+xB″2â^'xO9â^'δ. Solid State Ionics, 2002, 154-155, 659-667.	2.7	14
124	Study on Direct Flame Solid Oxide Fuel Cell Using Flat Burner and Ethylene Flame. ECS Transactions, 2015, 68, 1989-1999.	0.5	14
125	<i>N</i> , <i>N</i> -Dimethylacetamide-Diluted Nitrate Electrolyte for Aqueous Zn//LiMn ₂ O ₄ Hybrid Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 46634-46643.	8.0	14
126	Structure and conductivity of praseodymium and yttrium co-doped barium cerates. Solid State Sciences, 2013, 17, 115-121.	3.2	13

#	Article	IF	CITATIONS
127	An intermediate temperature fuel cell based on composite electrolyte of carbonate and doped barium cerate with SrFe0.7Mn0.2Mo0.1O3ⴴδ cathode. International Journal of Hydrogen Energy, 2013, 38, 16546-16551.	7.1	13
128	Electrooxidation of ammonia on A-site deficient perovskite oxide La0.9Ni0.6Cu0.35Fe0.05O3-δ for wastewater treatment. Separation and Purification Technology, 2022, 297, 121451.	7.9	13
129	The Proton and Oxygen Ion Conduction in a NaCl Based Composite Electrolyte. Journal of Materials Science Letters, 1999, 18, 81-84.	0.5	12

130	Conductivity and redox stability of new double perovskite oxide Sr1.6K0.4Fe1+x Mo1â^'x O6â^'î´ (xÂ=Â0.2, 0.4,) Tj ETQq0 3.7	0 0 rgBT /0 12
131	Investigation of perovskite oxide <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si1.svg"><mml:mrow><mml:msub><mml:mrow><mml:mtext>SrFe</mml:mtext></mml:mrow><mml:r International Journal of Hydrogen Energy, 2019, 44, 26554-26564.</mml:r </mml:msub></mml:mrow></mml:math>	nro ም አሩmr	nl:m12>0.8 </td
132	Chemical stability study of Li2SO4 in a H2S/O2 fuel cell. Solid State Ionics, 2000, 127, 83-88.	2.7	11
133	Conductivity and stability of cobalt pyrovanadate. Journal of Alloys and Compounds, 2011, 509, 4117-4121.	5.5	11
134	New Layered Proton onducting Oxides Li _{<i>x</i>} Al _{0.6} Co _{0.4} O ₂ and Li _{<i>x</i>} Al _{0.7} Co _{0.3} O ₂ . ChemElectroChem, 2014, 1, 2098-2103.	3.4	11
135	Redox-reversible perovskite ferrite cathode for high temperature solid oxide steam electrolyser. Electrochimica Acta, 2017, 229, 48-54.	5.2	11
136	Phase transition, thermal expansion and electrical properties of BiCu2VO6. Journal of Solid State Chemistry, 2005, 178, 2927-2933.	2.9	10
137	Conductivity and redox stability of double perovskite oxide SrCaFe1+xMo1–xO6â€"î´ (xÂ=Â0.2, 0.4, 0.6). Materials Chemistry and Physics, 2015, 168, 50-57.	4.0	10
138	Effect of cation size on alkali acetate-based †water-in-bisalt' electrolyte and its application in aqueous rechargeable lithium battery. Applied Materials Today, 2020, 20, 100728.	4.3	10
139	Preparation, characterization and proton-conductivity of silica gel containing 71 wt.% 12-tungstogermanic heteropoly acid. Materials Chemistry and Physics, 2000, 64, 25-28.	4.0	9
140	Stability and conductivity study of NH4PO3–PTFE composites at intermediate temperatures. Journal of Alloys and Compounds, 2009, 480, 874-877.	5.5	9
141	A stable NH4PO3-glass proton conductor for intermediate temperature fuel cells. Solid State Ionics, 2011, 192, 108-112.	2.7	9

Conductivity and redox stability of new perovskite oxides SrFe0.7TM0.2Ti0.1O3- \hat{l} (TM = Mn, Fe, Co, Ni,) Tj ETQq0 0.0 rgBT /Overlock 10 142

143	Investigation on LiNaSO4–Al2O3 ceramics as electrolytes for H2/O2 fuel cells. Materials Research Bulletin, 1999, 34, 1651-1659.	5.2	8
144	Structural, thermal and electrical properties of Bi and Y co-doped barium zirconium cerates. Ionics, 2014, 20, 363-371.	2.4	8

#	Article	IF	CITATIONS
145	A highly stable Cu(OH)2-Poly(vinyl alcohol) nanocomposite membrane for dramatically enhanced direct borohydride fuel cell performance. Journal of Power Sources, 2020, 467, 228312.	7.8	8
146	Preparation and Properties of a Ni–Al2O3 Composite by a Sol–Gel Process. Journal of Materials Science Letters, 1999, 18, 707-710.	0.5	7
147	Direct Synthesis of Ni Nanoparticles by a Non-Aqueous Sol–Gel Process. Nanoscience and Nanotechnology Letters, 2012, 4, 136-141.	0.4	7
148	Synthesis, Crystal Structure, and Oxide Ion Conductivity in Bi4.6Ca1.1VO10.5. Chemistry of Materials, 2002, 14, 3700-3704.	6.7	6
149	Key materials and future perspective for aqueous rechargeable lithium-ion batteries. Materials Reports Energy, 2022, 2, 100096.	3.2	6
150	Formation and characterization of a new (LixAg1 â^' x)2SO4 (x ≤0.5) phase. Materials Letters, 1998, 34, 30-35.	2.6	5
151	Synthesis of Dendritic Nano‣ized Nickel for use as Anode Material in an Alkaline Membrane Fuel Cell. Fuel Cells, 2010, 10, 72-76.	2.4	5
152	Structure and conductivity of rutile niobium iron titanate. Solid State Ionics, 2013, 236, 48-53.	2.7	5
153	Effects of cobalt addition on structural, thermal and electrical properties of praseodymium-yttrium co-doped barium cerates. Journal of Electroceramics, 2014, 32, 344-352.	2.0	4
154	<i>SusMat</i> : Materials innovation for sustainable development. SusMat, 2021, 1, 2-3.	14.9	4
155	Electric conductivity in Zn2+-substituted lithium sulfate–alumina ceramics. Solid State Ionics, 2000, 136-137, 495-499.	2.7	3
156	Status and future prospects of intermediate, high temperature proton conductor fuel cell. Ionics, 1999, 5, 70-75.	2.4	2
157	Conductivity, Catalytic Property and Electrochemical Performance of a New Perovskite-Type SOFC Anode Material. ECS Proceedings Volumes, 2003, 2003-07, 793-802.	0.1	2
158	Preparation of Silver Nanoparticles by a Non-Aqueous Sol–Gel Process. Journal of Nanoscience and Nanotechnology, 2013, 13, 5445-5451.	0.9	2
159	Structural and Electrical Properties of the Perovskite Oxide Sr2FeNbO6. , 0, , .		2
160	Natural salt and fluoride based electrolytes fuel cells. Ionics, 1999, 5, 472-476.	2.4	0
161	Synthesis and growth features of copper hydroxide iodide nanoneedles. Materials Letters, 2007, 61, 846-849.	2.6	0
162	System studies and understanding durability: general discussion. Faraday Discussions, 2015, 182, 437-456.	3.2	0