Hideo Nakano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/542677/publications.pdf

Version: 2024-02-01

84 papers

1,703 citations

304743 22 h-index 330143 37 g-index

85 all docs

85 docs citations 85 times ranked 1520 citing authors

#	Article	IF	CITATIONS
1	PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Research, 2005, 33, e150-e150.	14.5	109
2	Inverting Enantioselectivity of Burkholderia cepacia KWI-56 Lipase by Combinatorial Mutation and High-throughput Screening Using Single-molecule PCR and In Vitro Expression. Journal of Molecular Biology, 2003, 331, 585-592.	4.2	106
3	Analyses of a Polyhydroxyalkanoic Acid Granule-Associated 16-Kilodalton Protein and Its Putative Regulator in the <i>pha</i> Locus of <i>Paracoccus denitrificans</i> Journal of Bacteriology, 1999, 181, 2914-2921.	2.2	92
4	Modifying the chain-length selectivity of the lipase from Burkholderia cepacia KWI-56 through in vitro combinatorial mutagenesis in the substrate-binding site. Protein Engineering, Design and Selection, 2002, 15, 147-152.	2.1	70
5	Improvement of H2O2 stability of manganese peroxidase by combinatorial mutagenesis and high-throughput screening using in vitro expression with protein disulfide isomerase. Protein Engineering, Design and Selection, 2003, 16, 423-428.	2.1	61
6	Expression of Fab fragment of catalytic antibody 6D9 in an <i>Escherichia coli</i> in vitro coupled transcription/translation system. FEBS Letters, 2002, 514, 290-294.	2.8	60
7	High-throughput, Cloning-independent Protein Library Construction by Combining Single-molecule DNA Amplification with in Vitro Expression. Journal of Molecular Biology, 2002, 318, 395-405.	4.2	54
8	PCR-linked in vitro expression: a novel system for high-throughput construction and screening of protein libraries. FEBS Letters, 2003, 540, 147-150.	2.8	48
9	PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and repressesParacoccus denitrificans phaPexpression in vitro. FEMS Microbiology Letters, 2001, 200, 9-15.	1.8	47
10	In Vitro Analysis of Roles of a Disulfide Bridge and a Calcium Binding Site in Activation of Pseudomonas sp. Strain KWI-56 Lipase. Journal of Bacteriology, 2000, 182, 295-302.	2.2	43
11	Insertion of Stabilizing Loci in Vectors of T7 RNA Polymerase-Mediated Escherichia coli Expression Systems: A Case Study on the Plasmids Involving Foreign Phospholipase D Gene. Biotechnology Progress, 1997, 13, 864-868.	2.6	41
12	A Picoliter Chamber Array for Cell-Free Protein Synthesis. Journal of Biochemistry, 2004, 136, 149-154.	1.7	40
13	<i>Streptomyces</i> Phospholipase D Mutants with Altered Substrate Specificity Capable of Phosphatidylinositol Synthesis. ChemBioChem, 2008, 9, 974-981.	2.6	40
14	N-terminal SKIK peptide tag markedly improves expression of difficult-to-express proteins in Escherichia coli and Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2017, 123, 540-546.	2.2	40
15	Prolonged Cell-free Protein Synthesis in a Batch System Using Wheat Germ Extract. Bioscience, Biotechnology and Biochemistry, 1994, 58, 1911-1913.	1.3	35
16	Signal peptide optimization tool for the secretion of recombinant protein from Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2015, 120, 518-525.	2.2	35
17	Single-step single-molecule PCR of DNA with a homo-priming sequence using a single primer and hot-startable DNA polymerase. Journal of Bioscience and Bioengineering, 2000, 90, 456-458.	2.2	34
18	Efficient coupled transcription/translation from PCR template by a hollow-fiber membrane bioreactor. Biotechnology and Bioengineering, 1999, 64, 194-199.	3.3	33

#	Article	IF	CITATIONS
19	Reduction of protein degradation by use of protease-deficient mutants in cell-free protein synthesis system of Escherichia coli. Journal of Bioscience and Bioengineering, 2002, 93, 151-156.	2.2	30
20	Microbeads display of proteins using emulsion PCR and cellâ€free protein synthesis. Biotechnology Progress, 2008, 24, 1107-1114.	2.6	30
21	Directing positional specificity in enzymatic synthesis of bioactive 1â€phosphatidylinositol by protein engineering of a phospholipase D. Biotechnology and Bioengineering, 2016, 113, 62-71.	3.3	30
22	â€~Zipbody' leucine zipper-fused Fab in <i>E. coli in vitro</i> and <i>in vivo</i> expression systems. Protein Engineering, Design and Selection, 2016, 29, 149-157.	2.1	25
23	Ultra-High-Throughput Screening of an In Vitro-Synthesized Horseradish Peroxidase Displayed on Microbeads Using Cell Sorter. PLoS ONE, 2015, 10, e0127479.	2.5	25
24	Improvements in the cell-free production of functional antibodies using cell extract from protease-deficient Escherichia coli mutant. Journal of Bioscience and Bioengineering, 2005, 99, 181-186.	2.2	24
25	Novel Strategy for Protein Exploration: High-throughput Screening Assisted with Fuzzy Neural Network. Journal of Molecular Biology, 2005, 351, 683-692.	4.2	22
26	Role of cysteine residues in esterase from Bacillus stearothermophilus and increasing its thermostability by the replacement of cysteines. Applied Microbiology and Biotechnology, 1994, 40, 664-668.	3.6	21
27	Ecobody technology: rapid monoclonal antibody screening method from single B cells using cell-free protein synthesis for antigen-binding fragment formation. Scientific Reports, 2017, 7, 13979.	3.3	21
28	Increasing cellâ€free gene expression yields from linear templates in <i>Escherichia coli</i> and <i>Vibrio natriegens</i> extracts by using DNAâ€binding proteins. Biotechnology and Bioengineering, 2020, 117, 3849-3857.	3.3	21
29	A Novel Strategy for Generation of Monoclonal Antibodies from Single B Cells Using RT-PCR Technique and in Vitro Expression. Biotechnology Progress, 2006, 22, 979-988.	2.6	20
30	Role of disulfide bond isomerase DsbC, calcium ions, and hemin in cell-free protein synthesis of active manganese peroxidase isolated from Phanerochaete chrysosporium. Journal of Bioscience and Bioengineering, 2014, 117, 652-657.	2.2	20
31	In vitro generation of rabbit anti-Listeria monocytogenes monoclonal antibody using single cell based RT-PCR linked cell-free expression systems. Journal of Immunological Methods, 2015, 427, 58-65.	1.4	20
32	Simple and Efficient Profiling of Phospholipids in Phospholipase Dâ€modified Soy Lecithin by HPLC with Charged Aerosol Detection. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 951-957.	1.9	19
33	In vitro construction and screening of a Burkholderia cepacia lipase library using single-molecule PCR and cell-free protein synthesis. Journal of Bioscience and Bioengineering, 2002, 94, 84-86.	2.2	18
34	Extracellular production of Pseudozyma (Candida) antarctica lipase B with genuine primary sequence in recombinant Escherichia coli. Journal of Bioscience and Bioengineering, 2016, 121, 303-309.	2.2	18
35	In vitro combinatorial mutagenesis of the 65th and 222nd positions of the green fluorescent protein of Aequarea victoria. Biotechnology and Bioprocess Engineering, 2002, 7, 311-315.	2.6	16
36	In Vitro selection of DNA binding sites for transcription factor, PhaR, from Paracoccus denitrificans using genetic library on microbeads and flow cytometry. Journal of Bioscience and Bioengineering, 2006, 101, 440-444.	2.2	16

#	Article	IF	Citations
37	Enhanced Cell-Free Protein Synthesis Using a S30 Extract from Escherichia coli Grown Rapidly at 42 °C in an Amino Acid Enriched Medium. Biotechnology Progress, 2008, 21, 608-613.	2.6	15
38	Directed evolution of angiotensin II-inhibiting peptides using a microbead display. Journal of Bioscience and Bioengineering, 2010, 109, 411-417.	2.2	15
39	Direct Enzymatic Synthesis of 1â€Phosphatidylâ€Î²â€Dâ€glucose by Engineered Phospholipase D. ChemistrySelec 2016, 1, 4121-4125.	ct 1.5	15
40	Rapid Generation of Monoclonal Antibodies from Single B Cells by Ecobody Technology. Antibodies, 2018, 7, 38.	2.5	15
41	Importance of disulfide bridge formation on folding of phospholipase D from Streptomyces antibioticus. Journal of Bioscience and Bioengineering, 2000, 89, 506-508.	2.2	14
42	Production of active manganese peroxidase in Escherichia coli by co-expression of chaperones and inÂvitro maturation by ATP-dependent chaperone release. Journal of Bioscience and Bioengineering, 2019, 128, 290-295.	2.2	13
43	Reduction of Protein Degradation by Use of Protease-Deficient Mutants in Cell-Free Protein Synthesis System of Escherichia coli. Journal of Bioscience and Bioengineering, 2002, 93, 151-156.	2.2	13
44	SIMPLEX: Single-Molecule PCR-Linked In Vitro Expression. , 2007, 375, 79-94.		12
45	Dosage effect of minor arginyl- and isoleucyl-tRNAs on protein synthesis in an Escherichia coli in vitro coupled transcription/translation system. Journal of Bioscience and Bioengineering, 2001, 91, 53-57.	2.2	11
46	Quantitative Y2H screening: Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter. Journal of Biotechnology, 2010, 146, 151-159.	3.8	11
47	A Robust Analytical Pipeline for Genome-Wide Identification of the Genes Regulated by a Transcription Factor: Combinatorial Analysis Performed Using gSELEX-Seq and RNA-Seq. PLoS ONE, 2016, 11, e0159011.	2.5	11
48	Enzymatic preparation of enantiomerically pure sn -2,3-diacylglycerols: A stereoselective ethanolysis approach. JAOCS, Journal of the American Oil Chemists' Society, 2006, 83, 603-607.	1.9	10
49	High-throughput screening of DNA binding sites for transcription factor AmyR from Aspergillus nidulans using DNA beads display system. Journal of Bioscience and Bioengineering, 2010, 109, 519-525.	2.2	10
50	Salt-induced increase in the yield of enzymatically synthesized phosphatidylinositol and the underlying mechanism. Journal of Bioscience and Bioengineering, 2016, 122, 276-282.	2.2	10
51	A Trimmed Viral Cap-Independent Translation Enhancing Sequence for Rapid in Vitro Gene Expression. Biotechnology Progress, 2000, 16, 517-521.	2.6	9
52	Generation of monoclonal antibodies using simplified single-cell reverse transcription-polymerase chain reaction and cell-free protein synthesis. Journal of Bioscience and Bioengineering, 2006, 101, 284-286.	2.2	9
53	Facile Enzymatic Synthesis of Phosphatidylthreonine Using an Engineered Phospholipase D. European Journal of Lipid Science and Technology, 2018, 120, 1800089.	1.5	9
54	Structures of an engineered phospholipase D with specificity for secondary alcohol transphosphatidylation: insights into plasticity of substrate binding and activation. Biochemical Journal, 2021, 478, 1749-1767.	3.7	9

#	Article	IF	CITATIONS
55	In vitro generation of anti-hepatitis B monoclonal antibodies from a single plasma cell using single-cell RT-PCR and cell-free protein synthesis. Journal of Bioscience and Bioengineering, 2010, 109, 75-82.	2.2	8
56	Immobilization of proteins onto microbeads using a DNA binding tag for enzymatic assays. Journal of Bioscience and Bioengineering, 2016, 121, 147-153.	2.2	8
57	SKIK-zipbody-alkaline phosphatase, a novel antibody fusion protein expressed inÂEscherichia coli cytoplasm. Journal of Bioscience and Bioengineering, 2018, 126, 705-709.	2.2	8
58	Modulator-mediated synthesis of active lipase of Pseudomonas sp. 109 by Escherichia coli cell-free coupled transcription/translation system. Journal of Bioscience and Bioengineering, 1999, 88, 605-609.	2.2	7
59	Rapid screening for affinity-improved scFvs by means of single-molecule-PCR-linked in vitro expression. Journal of Molecular Catalysis B: Enzymatic, 2004, 28, 223-228.	1.8	7
60	High-throughput screening method for promoter activity using bead display and a ligase ribozyme. Journal of Bioscience and Bioengineering, 2012, 114, 671-676.	2.2	7
61	Zipbodyzyme: Development of new antibody-enzyme fusion proteins. Journal of Bioscience and Bioengineering, 2018, 125, 637-643.	2.2	7
62	Spatial arrangement of proteins using scCro-tag: application for an <i>in situ</i> enzymatic microbead assay. Bioscience, Biotechnology and Biochemistry, 2018, 82, 1911-1921.	1.3	5
63	Acyl chain that matters: introducing sn-2 acyl chain preference to a phospholipase D by protein engineering. Protein Engineering, Design and Selection, 2019, 32, 1-11.	2.1	5
64	Improvement in the Organic Solvent Stability of Pseudomonas Lipase by Random Mutationa. Annals of the New York Academy of Sciences, 1998, 864, 431-434.	3.8	4
65	Stabilization of affinity-tagged recombinant protein during/after its production in a cell-free system using wheat-germ extract. Journal of Bioscience and Bioengineering, 2003, 95, 209-214.	2.2	4
66	Emulsion culture: A miniaturized library screening system based on micro-droplets in an emulsified medium. Journal of Bioscience and Bioengineering, 2011, 112, 299-303.	2.2	4
67	A chromogenic substrate for solid-phase detection of phospholipase A2. Analytical Biochemistry, 2014, 447, 43-45.	2.4	4
68	Creation of Novel Enantioselective Lipases by SIMPLEX., 2007, 375, 165-181.		3
69	Handmade microfluidic device for biochemical applications in emulsion. Journal of Bioscience and Bioengineering, 2016, 121, 471-476.	2.2	3
70	A simple, real-time assay of horseradish peroxidase using biolayer interferometry. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1822-1828.	1.3	3
71	In Vitro Construction and Screening of a Burkholderia cepacia Lipase Library Using Single-Molecule PCR and Cell-Free Protein Synthesis. Journal of Bioscience and Bioengineering, 2002, 94, 84-86.	2.2	3
72	Novel Techniques using PCR and Cell-Free Protein Synthesis Systems for Combinatorial Bioengineering., 0,, 179-189.		2

#	Article	IF	CITATIONS
73	Strain improvement of Lentzea sp. 7887 for higher yield per unit volume on hydroxylation of cyclosporine derivative FR901459. Bioscience, Biotechnology and Biochemistry, 2017, 81, 1456-1459.	1.3	2
74	Pilot-scale whole-cell biocatalysis for the hydroxylation of cyclosporine derivative, FR901459, at higher concentrations by Lentzea sp. 7887 using soybean flour as a novel substrate dispersant. Journal of Bioscience and Bioengineering, 2017, 123, 56-62.	2.2	2
75	Development of a dual monoclonal antibody sandwich enzyme-linked immunosorbent assay for the detection of swine influenza virus using rabbit monoclonal antibody by Ecobody technology. Journal of Bioscience and Bioengineering, 2020, 130, 217-225.	2.2	2
76	Construction of a DNA Library on Microbeads Using Whole Genome Amplification. Methods in Molecular Biology, 2015, 1347, 87-100.	0.9	2
77	Role of cysteine residues in esterase from Bacillus stearothermophilus and increasing its thermostability by the replacement of cysteines. Applied Microbiology and Biotechnology, 1994, 40, 664-668.	3.6	2
78	Cell-free Protein Synthesis Systems: Increasing their Performance and Applications. Advances in Biochemical Engineering/Biotechnology, 2004, 90, 135-149.	1.1	1
79	Development of a rapid immunoassay system: Luminescent detection of antigen-associated antibody-luciferase in the presence of a dye that absorbs lightÂfrom free antibody-luciferase. Journal of Bioscience and Bioengineering, 2017, 124, 694-699.	2.2	1
80	Efficient coupled transcription/translation from PCR template by a hollow-fiber membrane bioreactor., 1999, 64, 194.		1
81	PhaR, a protein of unknown function conserved among short-chain-length polyhydroxyalkanoic acids producing bacteria, is a DNA-binding protein and represses Paracoccus denitrificans phaP expression in vitro. FEMS Microbiology Letters, 2001, 200, 9-15.	1.8	1
82	Title is missing!. Nippon Nogeikagaku Kaishi, 2004, 78, 483-486.	0.0	0
83	GLOBE: Analysis of DNA–Protein Interaction Analysis. Methods in Molecular Biology, 2011, 687, 307-317.	0.9	0
84	Development in Screening Strategies for Monoclonal Antibodies: Get Better Antibodies, More Rapidly. Kagaku To Seibutsu, 2017, 55, 490-495.	0.0	0